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CHAPTER 1

INRItODUCTION AND SUMMARY

1.1 NINRODUCTION

This document constitutes the Final Technical Report for contract F49620-90-C-0016

AWl~ication of Gabor Reresentaions to Military Problems. All work performed by Atlantic

Aerospace Electronics Corporation under the Final year of this contract is reported herein.

The outline of this report is as follows. The remainder of this chapter contains short

summaries of the work items. Chapter 2 reviews theoretical developments, Chapter 3 discusses

the software tasks and Chapter details the applications areas investigated. There are three of

these: (4.1) application of morphology to specific emitter analysis; (4.2) use of Gabor transforms

in automatic target recognition and (4.3) minimum dimension Gabor representations.

1.2 SUMMARY

1.2.1 Theoretical Developments

Discussion of theory is presented in two parts: analytical results; and algorithms.

1.2.1.1 Theory

Theory topics investigated include a Gabor sampling theorem, further studies on accuracy and

stability of the representation and relations between matrix method stability and signal duration.

1.2.1.1.1 Gabor Sampling Theorem

In section 2.1.1 we show a sampling theorem applicable to Gabor expansions of bandlimited

functions, derived rather directly by Shannon's technique. The theorem illuminates relationships

that exist between the number of degrees of freedom in the signal and window functions and the

minimum number of Gabor coefficients that must be retained to have a faithful expansion.

1.21.1.2 Accuracy and Stability

In section 2.1.2 we report on the stabilization of the Gabor transform under situations where a
window choice desirable from an application point of view leads to a near singular mapping.

1-1
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Methods applicable to both versions of the transform used in GSPS (Zak and matrix) are

presented. In addition, some thought has been given to the use of discret representations in

which the window function has a zero in its Zak transform, this being one of the singular

situation for which the techniques mentioned above were devised. The philosophy of such

methods is to live with the zero rather than modify it. One technique is to represent the signal as

a projection into the space of all signals having Zak zeroes where the window function has them
and minimizing the energy loss by through relative positioning of the signal and grid. The error
involved in neglecting-in Zak space-a coordinate for which the Zak transform of the window

is very small or zero is considered, and the minim"i aion of this error over shifts of the signal and
window is shown to lead to smaller than errors than one might initially expect. A specific

example-white gaussian noise input--is carried through the analysis. Further improvement is

possible when the input is cyclostationary.

We also indicate how a slightly modified basis, one that eliminates a number of the Gabor

translates from the basis-as many as there are Zak zeroes in the window-and replaces them
with other functions, provides a stable basis that retains most of the Gabor features.

IL.2.1.3 Relations between Matrix Stability and Signal Duration

In section 2.1.3, stability of the matrix method of Gabor transform calculation is studied by

looking at the algorithm that produces a biorthogonal function from its window, or vice versa.
Our preliminary results help explain the mechanisms controlling the blowup of the transform

method for certain window selections.

1.2.1.2 Algorithms

1.2.1.2.1 Oversampling with the Gabor Transform

One new important algorithm has been implemented in GSPS this year, which is the
oversampled Gabor representation. or the Weyl-Heisenberg expansion. In this theory the number

of expansion coefficients exceeds the number of data samples, which leads to some interesting
tradeoffs. For the higher computation required to obtain the coefficients, one gets finer time-

frequency resolution-as in classical Gabor, one can partition this between domains at will. As

could be expected. this induces a non uniqueness in the transform, which one car. view in one of

two equivalent ways: (1) the coefficients associated with a fixed function are not unique. or (2)

the relationship between window and biorthogonal is no longer uniquely invertable.

1-2
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1.2.2 Software Devei0pmlut

1.2.2.1 Second Year Effort

The accomplishments of the second year effort, during which the bulk of the GSPS was

developed, are reviewed prior to discussing the third year amendments.

1.2=2.2 Third Year Effort

Among the principal upgrades of the GSPS during year three are: a map view of the

coefficients; ability to turn grid lines off or on at will; improvement of the command line

interface; and availability of intermediate results in the transforms. In accomplishing the latter.

the transforms were split so that, for example, the computation can be halted after the calculation

of the Zak transform without continuing through the Gabor coefficient calculation.Also, a list of

warnings is provided about features of the code for which undebugged traps have been observed.

1.2.2.3 User's Guide

New files and routines are listed, and as an example. the procedure for adding a new signal type

is explained. Because of the split-up of the transform calculations, a new program flow is in

operation, and this is discussed in detail.

1.23 Applications Research

1.2.3.1 Fault Identification in Feedback Control Circuitry

In work performed during the first two years of the contract, AAEC investigated the ability to

locate faults in feedback control circuitry using data sets provided by a DOD customer. In this

last year the emphasis was on the test of morphological filter methods for this problem, under

funds added to the contract through a MIPR. A significant issue in the evaluation of the methods

was the questionable "ground truth" supplied with the data. Near the end of the work a revision

of the ground truth in the data was made using a neural net classifier, and subsequent evaluations

were made against this standard. Classification using the methods described in the text generally

succeeded in achieving a high correct classification'probability.

An extension of the Gabor methods used on this problem in year 2 was attempted, but the
"ground truth" problems associated with the data precluded any meaningful effort, since the

revised ground truth was not available in time for the needed analysis.

I-3
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1.2.3.2 Automatic Target Recognition

An infrared search and track (IRST) system is able to detect targets while they are still

unresolved by the receive optics. Each sufficiently strong target generates a response equal to

the point spread function (spatial impulse response) of the optics. The premise that automatic
detection and recognition (ATM) of such targets in a background of. for example. clouds could be

enhanced by Gabor-based signal processing was tested under contract.

AAEC employed some actual cloud background data upon which was superimposed both

uniformly and nonumformly distributed targets representing point spread functions of either a

long wave or medium wave IR sensor. Single scan lines were extracted and subjected to Gabor

processing characterized by: (1) a window function modeled after the target impulse response.

and (2) expansion that emphasized time (or spatial) resolution at the expense of frequency

resolution.

The experimental results showed two main features. The first is that if one performs not a

single Gabor analysis, but instead several in which the registration of signal and window are

changed at each instance, the targets essentially all show up in one of the cuts. In some other
cases in which preprocessing was applied to the signals, the targets were made visible in a single

cut, but spread across the frequency bins.

The results of this investigation are of course preliminary and incomplete, but they do

suggest promise for the Gabor transform as a tool in this class of ATR problems. Applications

involving resolved targets were not tested.

1.2.3.3 Minimum Dimension Gabor

Under a prior Phase I and II SBIR for ARPA, AAEC has performed the theoretical and initial

computational exercises in minimizaton of the dimension of a representation of a signal set. The

efforts carried out under this contact further generalize this by incorporating minimization under

linear and nonlinear constraints on the biorthogonai function. The results of the exercise show

this process to be tricky, requiring greater effort than was able to be applied here. The

computational procedures in doing this have by now been pretty well wrung out, but there

remain fundamental questions associated with the best types of constraints to use. Also, the

ability to work with the Zak method, which we believe to be the more stable of those available.

has yet to be implemented.

1-4
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CHAPTER 2

TEEORLEICAL DEVELOPMENTS

S1TH EO R Y

2.1.1 Gabor Sampftn Theorem

During the reporting period we have looked at the application of sampling theorems within the

realm of Gabor analysis. This activity has led to a Gabor sampling theorem that casts light on

the relationship between degrees of freedom in the Gabor window and the represented signal.

We begin with a naive imitation of the original Shannon-Koteinikov theorem derivation and

encounter some interesting results that differ from the classical theory due to the supervening

circumstance that there are two functions of the independent variable (taken to be time here)

subjected to sampling. This imposes some stipulations not present in the earlier theory.

To begin, we address the use of Shannon-Koelnikov sampling expansions for functions

expressed in a Gabor represention. In general, a function represented as

s(t)= a. (2.1.1)

where the {wnm()} comprise a Gabor basis for some T >0,

w... (f) = w(t- nT)ep(j2m / 7"), (2.1.2)

does not admit of a sampling theorem because it is not necessarily bndlimited. Even if the

window function w is itself bandlimite-, (2.1.1) can have arbitrarily high frequency content if the

Gabor coefficients do not vanish as m increases. But with a bandlim.nt ".indow and Gabor

coefficients that are zero beyond a maximum frequency, any linear combination of basis

functions will be bandlimited, hence subject to a sampling theorem. We develop such a theorem

and use it. along with assumptions of time limitation, to investigate relationships among the

time-bandwidth products of the signal and window and the number of nonzero time and

frequency coefficients in the expansion.

2-i



2.1.1.1. The Sampl Theorem

Let w(t) be a function bandlimited to [A< B,, where f is cyclic hiquency. such hat the set of

-,mnslates (2.1.2) is a basis for L2(R). We denote the set of such bandlimied functions as O{B{w }
and say that w e OB{B}. Correspondingly, the translate w...e I{Bw + mI/T}Vne Z. For

an expression of the form

M12

,(t) (2.1.3)
im-M/2n,.-..

we clearly have that {w•} jeB{B) + M /2T}Vn r Z. m S M12. and, by Shannon-Kotelnikov

[SHAN],

Wmj,(t)= kin-.. w~) sinc(jj2rB,(: -+2

= ~w(--nT'ýpj2xmikI2BT) sinc[2,rA (:t- )], (2.1.4)

where B. = B + M / 2T and we use sinc(*) to denote sin (*)(-). To use a common set of

samples of w for each value of n in (2.1.4), we should set T equal to a multiple of 1/2Bo. ie.,

T -L 0 2B.. Now (2.1.4) reads

W mA(t)= wX -~ n4 I.~~m /L) ij( L -kA (2.1.5)
k--rn 0 "

Inserang the sampling theorem expansion for w into (2.1.2) yields

MI/2 k-n t_ kk\ F
,4. B 2--.xpBj2m,/,,) smn 2.. o t-.•-,'. (2.1.6)

mm- I 2n •'-us km- 280} L...o

Trivially s e O{ B0 }, and it has the sampling expansion

"2-)
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where

M/2 k-n a~ j'e j23Dnk/L (2.1.8)

2.1a2 TIme-Bandwkfth Products

No restriction on the time index n of the Gabor coefficients was needed to get the sampling

theorem. But now let us apply the restrction Hnj < N / 2 and consider only those expansion using

a finite number of coefficients:

M12 N/2s(t)= 1 7 a ,fw, C~t). (2.1.9)
m•-MI2nm-NM2

Further suppose that w is essentially time-limied, i.e., the samples of w are zero for M Z Tw / 2.

We can associate with w a time-bandwidth product (or number of degrees of freedom)

D, = 2BwTw, (2.1.10)

that represents the mininmum number of samples of required to represent w faithfully through
the sampling theorem. The same can be done for s, and it is easy to show that

Ds 2B:Ts =(Tw + NTX2Bw + M / T). (2.1.11)

Because both4-. (= 2B07) and M are integers, and L, = 2BwT + M. the quantity 2BwT is also an

integer, which we denote as L the length of the Gabor time cell in units of Nyquist samples of s.

Then

D.T = ( + M4 L)2B + NL.(2.1.12)

Assume the window function and the coefficient bounds M and N are given, and that only
the grid shape (L) may be varied. To varying L is to change the subspace of L2 (R) spanned by

the basis of the rmucated epr ton. Although we would like our basis to accommodate as
many degrees of freedom as possible, it is not particularly desirable to have that number depend

2-3
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on the grid shape. A value of time-bandwidth product that is achievable for any grid choice

would be a conservative guide to assessing the capability of the tuncated repre aono.

Minimizing the value of Ds with espect to L however, determnes a value of signal time-

bandwidth product that is achievable independent of the choice of grid. Signals whose time-

bandwidth products are less than this minimumn will be called uniformly renteseable with

respect to the window and the coefficient limits (w, M, N). D. has a unique minimum at= L,

DSI +LM.L (2.1.13)

IV2B T. (2.1.14)

when 1 1. We interpret (2.1.14) to say that a signal is uniformly representable by the basis

(w, M. N} if its time-bandwidth product satisfies

4 FT5,2 w + "-'WN. (2.1.15)

If (2.1.15) does not hold for some s, then either the time extent of the signal will exceed the

span of the time translates of w or else s will have frequency content that is not captured by the

frequency translates, at least for some choices of T (or L). One of the following inequalities will

be violated for some choices of grid:

Bs > Bw +M/2T

Ts > 7,, + NT (2.1.16)

Although no theorem guarantees that a signal uniformly representable with respect to a truncated

basis { w, M. N} will automatically have a 'nice' representation in the sense of some error

measure. for example

S = s(t) - I aff.wmn (t)~ (2.1.17)

the time-bandwidth product guidelines should provide insight into the match between a signal

and its expansion over a truncated basis. Theorems relating to this will be sought in furore work.
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We close by observing that (2.1.15) can be solved in the following two inmesting forms: the

first states a requirement on the window time-bandwidth product, given the signal and the

number of coefficients; the second tells how many coefficients must be retained to expand a

given function with a particular window:

MN 2 ;2 BT, ;2 B.T.(2.1.18)

2.1.2 Accuracy and Stabilty of the Expansion

Accuracy and stability of the Gabor representation are longstanding issues. Over the course of

work on the three-year contract, AAEC has made considerable progress the in ug of

these matters, most of which has been discovered piece by piece and not documented in prior

reports.

Two distinct approaches are reported here. In the first type, a "bad" window is tamed by

adjustments to either the window or the point grid. Finding a --ansormation close to the

original, but with much better conditioning, is the goal of this approach. In a second method, we

examine the implications of working with window functions that lead to noninvertible transforms

and assessing the associate loss of representation fidelity. The latter work is in its early stages

and is not yet supported by numerical experiments, whereas the former category has been well

explored numerically by AAEC.

2.1.2.1 Stabilization by Window or Grid Adjusuneut

In (BALA], presented at the 1992 IEEE-SP International Symposium on Time-Frequency and

Time-Scale Analysis, we have collected descriptions of a number of the techniques we have

successfully employed in stabilizing ill-conditioned Gabor expansions and presented them by

computed example. Methods applying to both the Zak and matrix methods are included. The

following summarizes the content of this paper, which is found in full in Appendix B.

The paper begins by summarizing the Zak and matrix algorithms used in AAEC's GSPS

software, highlighting the features of the window function that in each case can lead to

singularity of the transform. Section 2 addresses experiments performed with the Zak algorithm.

where we present a condition number expression for the mapping. Explosion of this number
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results from zh rs of the Zak transform of the window fumction lying on or near the com

grid. Using a window of the form

w(t) - teM t), (2.1.19)

which has a single zero at a point whose time coordinate is adjustable by choice of a, we explore

three techniques for ameliomang the Zak zero problemu (1) subtle change of the window
waveform to displace the Zak zero; (2) time- or frequency-translation of the window; and (3)

alteration of the time-frequency grid. Examples of an ill-conditioned transform before and after

each of these methods are shown, and in each case considerable stability is recovered.

Section 3 deals with a similar treatment of the matrix method. The failure mechanism in

this case is the occurrence of zeros of the window function itself within the interval from the

zero-th to the first time grid point. The window in (2.1.19), having a zero at the time origin,

makes its matrix trandorm noninvertible. Left shifting the window by just one point is enough

to stabilize the transform. A second method involves adding a small constant value to the

window at every point. Numerical results of both techniques are presented.

2.1.2.2 Working with Transforms Having Zak Zeros

The following thoughts were stimulated by reading (TOLl], m which it is remarked that

although one approach to deal with a window having a Zak zero is to use it only for expansion of

functions that have a corresponding Zak zero, this solution may be overly restrictive. The

reference contains no evaluation of the degree of restriction imposed by this approach, and it

seemed of interest to consider this aspect further.

Assume a discrete Gabor expansion using a window having exactly one Zak zero on the

grid, e.g., the gaussian. for which

Z,,4,( 2 2)=0 (2.1.20)

In a discrete time expansion there is just one bad point for the transform as executed by the Zak

method, which is the point where the "divide by zero'" occurs. Consider the set of all functionsf

in 12 such that

Zf (2 2)=02.1.21)
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This set is a subspace of P2, since if f and S have the zero property, af + bg has it also. We

would like to consider what it means to take an arbitrary f and make some "minimal"

modification to it such that the resulting I belongs to the subipace Z•,(j,)-0.

The indicated procedure is of course a projection operator, and thus there is a least squares

solution to the estimation. That is, find I such that- (i) Zq)(XA)=O, and (ii) V -if is

minimized. Finding f could be accomplished by a classical least squares procedure, but there is

a better way. One should compute the Zak transform off, zero the appropriate coordinate, and

retransform to get f.

Let h represent the error induced by the projection,

f =f+h, (2.1.22)

and use 11)42 as the error metric. Let the Gabor expansions under consideration have an N x M

time x frequency grid size; then there are MN points in any associated function (the data,

window, Gabor coefficients and the Zak transforms). In all the following we assume the

gaussian case with its zero at the center of the unit square. It is easy to see that

; 0 ; (pq) (0/2,M/12 ) (21 )( p, q) f(N/2, AM/)

and that

h(/M+ r) Ivy N-I
N ,) = jh .%Iv YM ex(j N) (2.1.24i

P- 0

0; 'q*M12
ffi/r (2.1.25);f YY) q = M / 2'

One then readily finds that

/(2.1.26)

We can use 1/42 /iras a measure of energy loss in the projection, and estimate its

approximate value by noting that the loss is one out of MN coordinates: since the Zak transform

is unitary, we can anticipate an energy loss on the order of 1/MN.
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Consider fhter that there ane M unique allgments off with the time grid in regard to Zak

transformation, and there is no reason to imagne an a priori preference for any one of tbem.

Define the set of tm translaes off as 0 S m.< M -1, where we idntifyfwithf(0 , and

fm) is its m-th translate. Then in attempting to minimi the projection e=r, we are fee to

inspect ail M translates of f and choose the one such that lZ(,.ýh)(kXJX)fis least. The error

a with each traslate is

2 Iz,(fI)(X5 ý (.

P-q

and the minimum is

4 e,. (2.1.28)
OSMeAM-!

We would like to estimate the savings in choosing to discard the smallest possible amount

of energy. To do so requires some assumption about the signal being represented; let us take as
an example a signal f consisting of statistically independent, real-valued, zero mean, unit
variance gaussian noise variables. For any fit is true that

P1-I
Zf ()J,/ 2) .(-1)kf(k +) (2.1.29)

k-O

and therefore the new gaussian variable in (2.1.29) satisfies

Zf (Y2 -Y) =0 (2.1-30)

and

,Zf (,2y2A2j = If(k + Y2)[=IV. (2.1'.3 1)
k,,O

We would like to compare this average energy in the Zak transform of f to the expected
energy in the Corresponding Zak of signal f(j,), for which the energy loss is minimum. We can

do this through the following theorem.
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(A) 0% (2.1.32)

This theorem tells us that them is an expected savings propomonal to the square root of the
available number of shifts of the sinal relative to the grid.

kowt Let

,m. =Z•.,(XX): MSM- 1 (2.1.33)

and define

Sm in~js4}.(2.1.34)

We want to find the probability density of S and compute irs second moment.

Clearly

Pr(s~ ax) = Pr{(PIso> x) n(jsi I> X)eer(S... lI-> X)}=[Pr{(Nso> x)}J (2.1.35)

But

Pr{(•oI > X)} = Pr{(SO > X) u(So <-X)} = 2Q(4 ). (2.1.36)

where Q(i) is the normal probability tail integral

Q(x) = du p(u)u --.duexp-u/ 2), (2.1.37)

and p(-) is the gaussian density. We observe that

d

Q(x) = -p(x). (2.1.38)

The probability distribution (integral of the density) of s is then given by
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Pr{(S < X)} l- [2 X r (2.1.39)

and its density is found by d i u:

q() . Pr•,•s <X)} %S_< 0 f2." ] -r ; X2-0. (2.1.40)

Then

-' Tdu x'q(x)a dN}x x i2M Gd )]

0

2MVýfdy V2p(-0( 2 Q(V)JM-1 (2. 1.41)
0

We see that (2.1.41) yields a value of N for the case M = 1. which checks with (2.1.31).
Although we cannot analytcally cary out the integration in (2.1.41) to get a closed form exat
value, we can get a tight upper bound by usmg the familiar inequality

Q~v)S -Luep(-v- / 2); v Z 0 (2.1.42)

as follows:

=2M~f dv V2p(vX2Q(v)1m-i : 2MNJ dmw v' exp(_MV2 2)
0 0

0

Our interprttion of this sult is as follows. If we arbitrarily position our signal with
respect to the grid, we can expect to lose the energy of one of our MN coordinae If we rmplace
the numerator and denominator in (2.1.-27) with their expected values, we find
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e , = 1 (2.1.44)

MfN
p4q

Choosing the signal placement wisely lets us achieve

Le., the expected fraction of energy loss is smaller than the fraction of coordinates disca

Thus from an energy viewpoint, representation by a discrete Gabor transform using a window

having a single zero may be quite tolerable!

There is another perspective to put on this sequence of observations. We have selected for

our signal a stationary process, and have applied to it a time-frequency transform. Conventional

wisdom tells us the utility of time-frequency techniques is that they capture nonstationary

behavior. In one sense then. we might not expect any benefit from the analysis, and one could

argue such a case, saying "our window selection was so inept that the basis functions were

incomplete and we lost some signal; only by a clever trick did we minimize that loss."

In support of this argument, notice that the expected energy loss increases as N increases,

i.e., as the time resolution of the transform increases. This may be considered to be the penalty

associated with going from Founer-type representations, which have no time resolution, to a

mixed domain picture when the phenomenon under study is stationary. Now suppose we give

our signal a second-order staisticai cyclostationarity by assuming the variance to be a periodic

function with a period such that several cycles are captured within the MN data points. In the

period is in fact Ml, we would anticipate that a Gabor representation using M frequency points

and NR MNM/k timepoints to be well matchedto thesignal. Ifthe variance had apattern such

as that shown in Fig. 2.1-1. one can see that by picking the grid such that the time coordinate of

the zero of the window matches the minimum variance point, one would in fact expect to lose

little and do better, on the average, than the 1/ WMW improvement found for the stationary case.

Here we are exploiting the time-varying behavior of the Gabor series to match the problem, and

are finding some good rewards.
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Observing all that has been done above. one cmn conclude that it is not actually necessary, to

sacrfice any. of the signal energy, if we will liberalize our representaton slightly. The space into

wbich we have projectd the signal has an orthogonai com-lsmanned by, in this case. a

single basis function. Uf we add this funcdon to the (M N- 1) others genrated by the

•e/•eotranslates of the Gao window, we recover a complete bass. it diffrs from a

strct Gabor batsis in tha one metmbe fails to exbtt fte translaton prpet. This gives us

another way to see the penalty for using the window with a Zak zero:n it causes us to abandon part

of the nice stucture we valued in going to the Gabor series in the first place. However. the

deviation can be considered minimal. In fact. the added basis function depends only on one of

each M point in the data. this functon is just g = h / Zf (X, Y2, wb /e his given by (1)1.22);

•0; q*M12
g = HY M /27 (2.1.46)

Observe g is zero except for one point in M.

The above viewpoint says that we need not abandon a window function that resembles our

data quite weft simply because of its Zak zeros. The options are to remain within the stric Gabor

structure and sacrifice a small amount of signal energy, or to enlarge the representation and

capture eveyug. One of these approaches may well suit a wide variety of problems.
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2.13 Radom betweo Matri Stabiity and Sipnl Duradw

The Matrix Gabor representation as descuibed in (BALA2] has some stability pioblems

associated with it that an mentioned in the original paper, such as noninvembility of the window

if it posesses an analytical (or comptaonal) zero in the first Gabor tine slice, as well as other

problems that ame mentioned in the previous section and were investigaind in [BALAII, a copy of

which is included in Appendix A. We will now describe some preliminary results which lead us

to believe that one may have some control over the stability of the method by controling the

signal length or the number of Gabor time points, depending on the nature of the signal that is to

be analyzed. For windows whose values in the first Gabor time slice are not zero. but have a big

dynamic range and with the smallest value being much less than one, the method is also unstable

as can be seen from the following. Let the linear system to be solved be defined as

(WE)x = b (2.1.47)

where W is the MN x MN (block) matrix containing the window values, E is the MN x MN.

(diagonal) Fouier rtation matix, x is the MfN x 1 vectr of (ordered) unknown coefficients, and

b is the MN x I vector of signal data points, M is the number of Gabor frequency points and N is

the number of Gabor time points. We can now write the vector x of coefficients as

x = EBb , B = W" (2.1.48)

Let us now write W and B in their block form in order to see their representation more clearly

and to see how B will depend on the structure of W. Note that because of the ordering each of

the blocks of B and W will be M x . and there will be N x N of them in each matrx (for a full

deivation see BALýA21).

Wo
w, WO0

W- W2 W1 TO (2.1.49)

IV2W 2  W11 .'

w-i N-2
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B2 B (2-1.50)

LBN-I BN B O

8N..EI• 8 N, Bp, 43

and

B, =-we-,(wIw-81)

Bi = -Wg' (W2Wj' + W1BS) (2-1.51)

B3 =-W'(W3W ' + W2B + W112)

B1 =-W'(WWq~o + W1 _..1B *---W1 ._,); Ve(G2CN-1]

The extent of our analysis to date has been to look at the simplest nontrivial case which

occurs when the window lasts only over the first two Gabor time slices. This being the case, the

zeroth and the first W are nonzero, and the above formuia for the biohogona ix becomes

B, =-W 1'

B2 = -W-' (WI =1 ) = W(W W1') 2  (2.1.52)

B3 = -W-e (WI• 2) = -W-01(WiW-)

B,1 = -W'• (Wflt_1 ) = (-l)•W'e(WzW 1e)'; Vi1 ( 2,N- l].

from which we notice two important things. The first is that even though the window only has

support over two time slices, the biorthogonal has support over all the time slices, therefom the

biorthogonal matrix will be full. More apropos to this discussion, we notice that each sccessive

block of the biothogonal grows by a power of the inverse of the window entries in the zeroth

time slice multiplied by the corresponding window entries in the first time slice. This is due to
the diagonal nature of each of the blocks of W and B. This implies that the stability of the

method depends on containing that growth rate to reasonable bounds.
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The above discussion implies that one now has two possible ways of conoroling the stability

of the method depending on the namre of the signaL If the signal of interest is such that it can

tolerate being split up into pieces, then one can choose the desired number of frequencies M and

then make the length of the signal be such that the number of time points N keeps the power

B,_, =-(2.1.53)

well behaved and bounded. One can then apply the transform to each of the pieces separately. If

on the other band. the signal in question does not tolerate being split up, but we have some

freedom in choosing the number of frequency points. ie, the window is nonzero over the

increased length of the Gabor time slice, then one can increase the number of frequency points

thereby decreasing the number of time points (for a fixed signal length) and keeping the above

expression well behaved.

The computation of the biorthogonal matrix entries gets more involved as the number of

Gabor time points that support the window increases, and this analysis has not yet been
performed for the general case. When the analysis is complete, we will submit a paper for

publication on the obtained results. As a closing note we remark that in GSPS, all the

aforementioned analysis can be done a-priori for windows of ail lengths of interest, and the

information will be readily available when the signal is chosen, since the analysis is completely

independent of the signal.

2.2 ALGORITHMS

"I22.1 .Oversampling with the Gabor Transform

In order to increase the capability of the GSPS workstation to allow us to analyze different

types of signals, we decided to include the capability to perform oversampling. A brief

description of the algorithm is given here, and for a full detailed explanation the reader is

referred to (WEXL]. The formulation of the oversampling algorithm is as follows: Let P be the

total number of points in the signal data set, M and N be the number of desired frequency and

time points respectively, and M' and N' be two auxiliary positive integers satisfying the constraint

that

P = MN'+ M'N (2.2.1)

Under these conditions, the Gabor transform can be written as
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sM M)7.XIa.,js(k -an'Czp(2i~hrM/iv) (2.2.1)

p-1

a.t = Ysk)k(R- mN ')exp(2ixk / N) (2.2.3)

together with the condition that

P-ISh'(k +,nWV)i (k)e*2xp( nkA / (P / MIV),6.6.. (2 .-14)
line

At this stage, the last condition can be rewritten in matrix form. in order to solve for the

biorthogonal function b in a similar way as the matrix formulation of the Gabor transform. The

M' x M block matrix of window values, each square block being N' x N'. can be written as

(W )b- r (2.2.5)

with

Wi WIf+Op WW2jf.1 WW+M2jw0 w ww, .- we.,, w•.,W = W :W¢ W 2 .+W W 2W *L ... W 2W +(M -_• I W 2 W +(M_ 0W (2 6)

W(N-I)Or W(N-fIW. W(N-I)W4.2"" W(N-I)W4M-2)f W(N-IW.64M-IW

with each W1 given by

"h,

W1= .. (2.1.7)

/14+(W-2)

for a grand total of M'N' x P entries, premultiplied by the M' rM'. block matrix E of Fourier

rotations of size N' given by
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s

Et

and the P x 1 unknown biorthogonal and the M' Pr x 1 right hand side vectors b and r are
respectvely

b = [b(O) b(1) b(2) b(P -2) b(P- _)]r (2.2.9)

r=[PIMN 0 0 ..- 0 0]'

The biorthogonal vector can be now calculated after choosing a way to 'invert' the non-square
matrix associated with the window function. We chose to implement a generalized inverse or
energy minimization method in the GSPS workstation with some slight computational

modifications from the referenced paper. We noticed that since the inverse is given by

b = (EW)r((EWXFAW)"' r
"= Wr (WW)-I , (2.2.10)

i = E'r

the last computation can be performed by hand and it results in a reasonable computational
savings. The new right hand side vector becomes

r=[r. 0 0 ".. 0 0]f

ro=[P/IMN P/MN P/MN . /M ]T  (2.2.11)

with each one of the blocks being of size N' x I . The biorthogonal is. at this stage, fully
available and the Gabor coefficient map can be computed with the aid of (2.2.3). Reconstruction

of the signal (with or without postpocessng) can now be also calculated with the aid of (2.2.1).
A better description on how to perform these operations within GSPS and a description of which
parameters can be chosen by the user will be described in Section 3.3.
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CHAPTER 3

SOFTWARE DEVELOPMENT

3.1 SUMMARY OF SECOND YER EFFORT

Before discussing the software effort expanded this third and last year of the contract, we
will briefly summarize the work that was performed during the second year under contract.

3.1.1 Phase 11 Code

During the second year of effort, numerous additions and enhancements were incorporated
into the Gabor Signal Processing System software, which from here on we will call GSPS.
Before moving on to summarize the Phase 11 code. we will begin by describing the philosophical
change that took place towards the end of the first year of the contract. As described in the First
Annual Technical Report, the initial Gabor transform software prototype was imple-mente on an
IBM compatible PC and it was command line driven, ie, the user was prompted to enter a
number corresponding to a signal, window, etc., the Gabor processing was performed, and the
results were then written to files. Unfortunately, in order to change parameters, one had to either
restart the code or hardwire different values into the program (such as total number of points) and
recompile. The cumbersomeness of doing this, together with memory limitations and speed
considerations, forced us to migrate to a different (better) platform and to create a user friendly
graphical user interface that could accomodate all the power and flexibility that we wanted to
incorporate into the GSPS. Bearing that in mind, at the beginning of year two we selected a
SUN Microsystems SPARCStationl+® as the computational plaform, C as the scientific
programming language, and Xl I together with the XView toolkit as the graphical user interface
programming language to be used to develop the GSPS software that is currently available, and
which we have been using 'in house' for a period of well over one year.

3.1.1.1 Functdonality

The organization of the program has become more clear to the user by the development of a
graphical user interface that is layed out in such a way that the user can follow a sequence of
major categories, represented on the screen as butttons, and progresively move down the logical
sequence to ft desired function to be applied. This is accomplished in the following manner:.
the major categories represented by buttons are:
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Signals
Windows

Noise

Method

Clipping

Reconstruction

Iterate

Utility

Coefficients
Options
Output

Exit GSPS ?

Each of the buttons is the owner of a menu which contains menu items, which in turn may

contain (nested) submenus. The last entry of a path through a menu is either a command which is

executed immediately or. when appropriate, a command which contains a dialog box in which

the user can either enter, change, or choose selected default parameters. These parameters are

then updated in the main program and the command is executed. If the action that is selected by

the user results in a graphical representation of data, a window is automatically opened and the

data is displayed. Since the real estate on a computer screen is limited, all of the windows that

are opened by GSPS are multifunctional, ie, the same graphical window that is used to display

the analysis window is used to display the function that is biorthogonal to said analysis window.

Keeping that in mind. we can now illustrate the high level execution of the program by

means of an example, while a more detailed example including the features incorporated in the

third year will be included in the User Manual (Section 3.3). The user starts execution of GSPS

by opening their favorite X II-based window manager on the screen, and typing gsps from one

of the text 1/0 windows, or alternatively, opening a file manager and double clicking on the gsps

application. This results in the display of a Control panel containing the ( deactivated except for

Exit GSPS) buttons, and a Disclaimer panel containing the proprietary information, disclaimer.

software version, and two buttons marked "Continue" and "Quit". Selecting the Quit button exits

GSPS with no action being taken, while selecting the Continue button erases the Disclaimer

panel and activates the buttons in the Control panel. We are now ready to start processing

signals. Selecting the "Signals" button with the Right Mouse Button ( RMB )displays a menu

containing different signal choices right under the Signal button. Selection of a signal choice

with the Left Mouse Button (LMB) opens up a dialog box which allows the user to either choose
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default values for the signal by selecting the "Defaults" button in the dialog box, or enter the user

defineable parameters manually. The action can now be either aborted by selecting the "Cancel"

button, or accepted by selecting the "Ok" button. Accepting the choice results in the appearance

of a display window which contains the selected signal. One can now proceed to the selection of

the analysis window by selecting the "Window" button with the RMB. This results in the display

of a menu that is functionally identical to the "Signals" menu and, in fact, contains the same

entries. Selecting the "Ok" button from the Dialog box results in the appearance of a second

display window that contains the graphical representation of the analysis window. Once the

signal and window have been chosen, the user can proceed to the choice of the method that will

be used to do the processing by chosing a method from the menu associated with the "Method"

button. This can be accomplished by selecting the "Method" button with the RMB. and choosing

a method with the LMB results in a third display window being open. and it contains the

appropriate coefficients corresponding to the selected method. It is noteworthy to mention that

the Coefficients window automatically displays both 2-D and 3-D coefficient sets depending on

the representation that is warranted by the given method. At this stage the user can choose to

repeat the portion of the experiment described so far by choosing different signals, windows,

methods, or any combination of the above, or proceed to the reconstruction of the signal. If one

opts for the reconstruction route, there is an option to first perform simple thresholding on the

coefficient set by selecting the "Clipping" button with the RMB, entering the desired

thresholding levels, and removing the coefficients below, above, or between user defined upper

and lower bounds. If it turns out that it is not desireable to perform any thresholding, one can go

directly to one of the reconstruction routines which behave analogously to the method options in

the "Method" button. The reconstructed signal is now displnyed in the Signal window and, if the

reconstruction method is the same as the transform method, the coefficient set has not been

clipped, and the method was stable, it will be the same as the original signal except for roundoff

error. The L2 distance between the original signal and the reconstructed signal is reported next

to the origin in the Sign& display window

3.1.2 Capabiilties

During the second year of effort, numerous additions and enhancements were made to the

tool that was available at the end of the first year, the most noteworthy of which being that the

user could change initialization parameters like signal duration and time-frequency splitting of

the grid, as well as other parameters. without having to recompile the program. In fact, the only

time that recompilation is needed is when a new feature is added to one of the menus as a men=
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dent. After the addition is debugged. all the paramneters that can be controlled by the user (if any)

will appear in a dialog box when the selection is made.

Another Meajor improvement was the feel of the tool. The user could-now input parameters

of interest in the dialog boxes, and choosing the button labeled 'Okl made the program accept all

the parameters at once and continue with the execution. If the wrong parameter was input, the
user could move the pointer over to the appopriate field and change it before selection of the

Ok' button if the mistake was noticed in time or, in the case that it was not, the same (or a

different) menu item could be chosen, the correct parameter input and the 'Ok' buton selected. In

the previous version of the software, clerical errors would result in the user having to restart the

program fro step one. The menu approach also allowed the user to pick up at any point on the

list of buttons which logically preceded the last step chosen, and after an initial run through the

four logically sequential steps, ie, after going through the process of choosing the signal.

window, method and reconstruction, one could reprocess from any of the intermediary steps. We

will illustrate by saying that after the user had chosen the signal, window, and method, the signal.

window or method could be chosen again, as well as the associated utilities, without having to

either complete the sequence by choosing the reconstruction option or starting out with a new

copy of the same (or different) signal. The logical flow of the program is illustrated in Fig. 3. 1 -1

below.

SIGNAL. TMXT

Fig.3.1.1. Log~ical flow .1 the GSPS package at the aid o the second year

Note that even though the user could choose a different window or method after having
gone through the sequence of events once. the grid definition was at the signal level, therefore, if

one wanted to redefine the grid shape and size, one would have to go back to the signal choice

and redefine the signal in such a way that it reflected the desired configuration. We will see in

the next section that this limitation no longer exists due to the ability of the window to redefine
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grids, and the added capability to redefine grid configuration from a menu item's dialog box

Iuner the Utility button.

During Vbe. sicond year of effort we also included the method resulting from the matrix

reformulation of the transform (BALA] and nueous utilities to preprocess the signal, such as

zooming, shifting, saving to memory, etc.. We also reported various values of interest to the

approprate window after certain actions were taken, such as the length of the maximum

coefficient and the dimension of the signal set (ORR?]. For a full description of the

enhanemenut introduced during the second year the reader is referred to [AAE11.

3.2 TMRD YEAR EFFORT

3.2.1 New Facilities

As reported in the previous technical report, at the end of year one it was decided to improve

our computational facilities in order to be able to process larger data sets, and to speed up the

processing time. As it turns out, the upgrade that was made to the system at that time has

resulted in more than adequate computational facilities to perform the tasks asociated with this

project and, therefore, no new facilities were needed during the third year of effort. For a full list

of facilities, the reader is referred to (AAEC] and [AAE I].

3.22 Phase IMI Code

Phase MII software development has centered around broadening the applicability of GSPS

to a wider range of problems by improving its ability to interoperate with other analysis

packages. and through the addition of new diagnostic displays. In addition, we have

implemented two new versions of the Gabor transform with slightly different capabilities than

those present in the Phase U code. To facilitate to the addition of these features to GSPS, several

key portions of the Phase II code have been restructured for added flexibility, notably in the file

I/O facilities and in the handling of signal buffers.

3.22.a1 New Display Components

map view

A "map" mode has been added to the coefficient display to supplement the spike plot

display from Phase I. In this mode, the coefficient matrix is displayed as a grid of rectangular

color patches whose colors correspond to the magnitude of the coefficient at that coordinate.

relative to the maximum coordinate magnitude. Coefficient values below a compiled-in epsilon
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value are suppressed. and ae displayed in the background color. A color key s provided to the

lower left of the grid. Selection of the spike plot and map modes is accomp ished Using the
"map" button located in the control area above the color key.

grid button

A button labeled "grid" now appears in the control areas of the signal, window, and

coefficient displays. In the signal and window displays, this option controls the display of the

hash marks which indicate the andpoints of the Gabor timeslices. In the coefficient display, this

option works in conjunction with the map button to control the display of reference lines in the

spike plot mode, or to mark the boundaries of each color patch in the map mode.

The RMS duration and RMS bandwidth are now computed for both the signal and window,

and are displayed in the control areas of their respective windows.

A number of new signal options are available:

(inrction changes: new signal and window types)

Get Fourier

null signal
(interaction changes: reading data fils)
getfileinfo, matlab

(interaction changes: new transforms)

maaix2, oversampling

(interaction changes: piecewise forward and reverse transforms)

the: "compute" routines

biorthogonals and windows: matrix and zak

forward and reverse zak

(interaction changes:)

(changes to utilities)

One significant departure from the Phase II code is that the buffers containing the

intermediate components of the'Gabor transforms (i.e. the biorthogonal and Zak buffers) may

now be loaded from a file and explicitly manipulated. This introduces a synchronization

problem as these buffers were implicitly linked to other buffers when their contents were

automatically generated. A set of global flags have been added to indicate the validity of these
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buffers, and should be checked befod the corsesp-mding buffe ae to be used. Likewise, these

flap should be set appopriaely whenever any of the buffers is modified.

3.2,3 Warning and Sugutlow

The following is a list of known caveats for potential users.

After the tool has been running for a long time, it may crash.

Since you can't 'edit data in the 'window' window, any Gabor window g can be

done in the signal window, copied to memory, and then read in the window window.

The number of points in a signal or window should be an integer power of 2.

Although the coefficient display is cleared whenever it becomes marked as invalid, a refresh

call to that window may cause the previous contents to be redisplayed.

A number of conventions must be observed when Matiab data files are to be imported into

GSPS. Several variable names are reserved for use by GSPS [tmpM tmpN tmpRate unpType

tmpMethod Comment]. Any stored data elements which do not correspond to one of these

names will be interpreted as the dam with which the buffer will be filled. As a result, you should

not save any other elements in this file except for the signal itself, which may be saved with an

arbitrary name. If the file importing routine encounters an unknown element following the

signal. it will attempt to load that element's contents instead.

GSPS was developed in the OpenW'mdowsTM 2 environment, and is designed primarily for

use in a color environment. Although the application will run successfully with a monochrome

display, various text fields will appear crowded as the monochrome XViewTm 2.x libary uses a

different font entirely. GSPS will compile and run with XView 3.x libraries as well, but will

exhibit this behavior on both color and monochrome displays.

3.2.4 Scripts

Although the Phase II version of GSPS included a simple command line interface, it has

since proven inadequate to the expanded capabilities of the Phase MI code. As GSPS has become

more general in its purpose. so has the need for a more generic command line interface grown.

The new interface syntax is designed to accommodate additional transforms and also makes

provisions for transform-specific parameters.

3-7



,thob Awaspý Msu• ro d

gsWp -s <fm.ae> -w <ftane> -42Inr•sizj -o <frma >

gsW -s <fiane> -w <fuama> -m <M> -n <N> -4j2mLoWIz -o qhmw>

where:

-s <fnama> is a path to the file containing the signal

-w <fiwe> is a path to the file contaming the window

-x specifies the tnsfbm to be used:

-x2 indicates the Mauix2 method

.mn indicates the Matrix method

-xo indicates the oversampling method

-xz indicates the Zak method

-o <f•iune> contains the name of the file to which the coefficients should be written

3.3 USERS GUIDE

3.3.1 Procedure Dsrpin

The following new files and routines are present.

new files: get-fourcoef.c getfileinfo.c loadmat.c aulsig.c over.abor.c savemat.c tbprod.c

utilmaLc

new routines: graphics.c ifiLc loadfile.c main.c savefile. xforms.c

In the event that a signal. window, or coefficient matrix of exceptionally small magnitude

must be displayed, the plotting routines now impose a non-zero scale value...

Example: how to add a new signal type

Although new signals are typically generated externally and imported through the file I/O

interface, it is frequently desirable to hardcode new signal types which are to be used frquently

with minor variations, even though these signals will only be accessible from the graphical user

interface. This procedure typically requires four steps: coding the signal generator. coding the
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user interface components, adding calls to the main initalizafion and menu generation routines.

and adding build dependencies to the compilation control configuration file. For clarity, it is

generally desirable to name the source code files after the signal being generated; for instance, a

triangular pulse generator might have the files tri..pulse. c and optionally, tri..pulse. h
associated with it. Because GSPS lacks a generic mechanism for manipulating signal generation

parameters outside of the GUI. these variables should remain opaque to the remainder of the

program and may be defined as static types local to the signal's source module.

The signal generation routine is often adapted from another piece of standalone software, so

typically it is passed a desired number of points, a sample rate, and whether a real or complex-

valued signal is desired, and typically it returns a buffer of the appropriate size and type. This

may then be called from a callback routine which is shared by the signal and window menu

items, which is then responsible for copying the generated signal into the correct buffer.

The GUI supporting code consists of an initialization routine which creates the GUI objects.

and a set of callback routines which those objects will dispatch as various buttons and widgets

are manipulated. The construction of these callbacks is beyond the scope of this document, but

the file tripulse, c is recommended as a template.

Modifications should be made to the file main. c in four places. First, external references

to the routines should be added near the top of the file. Next, menu items should be created

under both the Signal and Window menus. Finally, a call to the initialization routine should be

added near the end of the file, but before the main loop is invoked.

3.3.2 Pmgam Flow

During the third year effort, much functionality was added to the GSPS software, but the

logical flow of the program has changed very little since the end of the previous year. The main

logical change has been due to the inclusion of a menu item called grid, info to the Utility

button. This menu item allows the user to redistribute the time and frequency points on the grid

at any time after the signal buffer has been written to at least once has been added to the utility

button. therefore, the user no longer needs to choose a new (or the same) signal to run different

grid configurations. The user still needs to generate a new signal buffer if the signal duration is

to be changed. One other change worth mentioning is that under the Utility button, a Compute

menu item has been added which allows the user to compute intermediate steps in the Gabor

transform computation. for instance, the Zak transforms and the window biorthogonal. This

means that the user no longer has to perform the full transform computation if the only thing of
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CHAPTER 4

APPLICATIONS RESEARCH

4.1 FAULT IDENTIFCATION IN F SEDBACK CONTROL CIRCUrMRY

This section describes the exp mnI pedored to investigate the application of the Gabor
epresenton for solving problems of emitne identicaton in communcatons. In these

expeimens. test data was used to investigate the characterization of signal features, specifically
transient signals, with the Gabor transfom. These test data features were used to characterize
signals as belonging to specific classes of emitters as an exercise in determining utility of Gabor-

based methods for tis problem

The problem investigated in these experiments was the mapping of signals of interest to
tnsmittg and receiving equipment identity. The utility of using Gabor-based techniques was
studied and tested with a set of signal data from several transmitter-receiver pairs. Each pair was
considered to generate a class of signals. The Gabor techniques were applied to the data to

Seach signal as a member of one of these classes of signals. A dimension measure of
the Gabor coefficient set, developed by AAEC under a separate DARPA contract [AAEC21, was

the main ducrimiant tested to separme the signals into classes.

4.1. Summary of Prevou Work (Gremnbelt Facity)

4.L1. Data Sets

Two sets of signal data were used during this effort. The first database consisted of 186 files
containing approximately 65 thousand time samples each, sampled from analog signals at a 20

Kbz rate. Of the 186 files, only 47 files contained signals of interest. Two types of transient
features were found in these 47 fides, and 56 occurrences of these features were chosen for the
experiments. The two types of transient features were designated the small and normal size
signals. The length of these features of interest ranged from 256 to 2048 time samples.

A second database consisted of 1944 files, containing signal data from many different
transmitter-receiver pairs. The length of these files ranged from approximately 1000 to 16500
time samples. In this data set, a signal of interest contained about 200 time samples.
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4.1.1.2 Experiments

The techmcal approach used in this investigation was to visually examine the original signal data
and look for features in the signals which appeared to be common within each class of signals.
Once these types of features were idee tiffed, a portion of the data containing the feature was

extracted to be used as both a signal and as a Gabor window function. Data-derived window

functions were then applied to the other signals using the Gabor transform. The resultant

dimension of the set of Gabor coefficients was minimized through a time alignment procedure,

and this minimum dimension was used to discriminate between classes. Additional

discnininants were used as appropriate. These included the maximum amplitude of the Gabor

coefficients, and the reconstruction error due tc "clipping" of the Gabor coefficients, which is

defined as deletion of all coefficients of magnitude smaller than a percent of the largest

magnitude coefficient. These additional measures improved the classification process.

Three types of experiments were performed: 1) Normal vs small signal characterization. 2)

Small signal discrimination, and 3) Signal classification with averaged windows. Since signals

of interest in the data come in two classes, the first task was the discrimination between these,

addressed by the first experiment. Given success at this first stage. discrimination within a class

was the remaining key factor. Experiments 2 and 3 were devoted to discrimination among small
signals. Discrimination among the normal size signals was not emphasized.

4.1.1.3 Results and Observations

Even though only a finite number of test signals and six window functions were used to analyze

and characterize the signals of interest, use of the minimum Gabor dimension value and the

maximum Gabor amplitude showed promising results. The use of averaged windows was found

to be a useful additional method of discrimination. For a complete description of these

experiments, refer to the Second Annual Technical Report (AAEC2).

4.1.2 Summary of Previous Work (Waltham Facility)

During the previous year. a MIPR subprogram was conducted under the Gabor program to

address the problem of identifying specific emitters from a particular class of interest to the

MIPR sponsor. A number of very large (megabyte-size) signals were provided by the MIPR
sponsor. Each typically contained several transient signals of roughly a thousand samples each.
The sponsor provided the locations of a few of these transients. The remainder (which comprised

the majority of the available transients) were extracted by hand by plotting the million-sample
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signals as 1000 x 1000 "maes" and manually marking inmesting segments with an interactive,
cursor-based utility which we developed for this purpose. Later in the program. a morphological

algorithm for automatically detecting and locating transients was developed and partially tested.

On the MIPR sponsor's request, work on automatic detection and extraction was terminated so

that the efforts could be concentrated on emitter classification.

Morphological filtering comprised the core of the classification techniques developed and
tested, particularly for signal conditioning and feature extraction. The development of reliable,

quickly computable, morphology-based discriminants and means for utilizing them was
continued into the third year of the Gabor program, and is discussed in the next section.

4.1.3 Year 3 Effort (Waltham Facility)

A second MIPR was added to the Gabor program to continue work on the specific emitter
identification problem. The primary technical objective was to demonstrate the effectiveness and
efficiency of morphological and other modern signal processing techniques for specific emitter
classification using transient signals provided by sponsor. The four key steps performed towards

this end were the preprocessing of selected transients, feature extraction, classifier design, and
performance evaluation. Morphological techniques were applied during the first two steps, and
were found to have the most benefit for feature extraction, providing a compact, easily computed

representation of the transients.

Two data sets were provided by the MIPR sponsor during Year 3, hereafter referenced as
the old and new data sets, respectively. The old data set comprised 23 moderately long signals,
typically containing 1000 samples each. Since our main thrust was classification. i.e., not
transient detection and location, we manually extracted a single segment, typically 100 samples

long, from each signal. Although the Year 3 "old data set" signals were much smaller than those

from the previous year, they still required manual transient extraction since they also contained
other signal components which the sponsor specifically instructed us to ignore. The signatures

taken from the old data set were fairly clean. The ground truth provided with them divided them
into six classes, and appeared reasonable based on both visual and computer-aided analysis.

The new data set, also provided by the (MIPR) sponsor, was much larger, consisting of 1944

moderately long signals of roughly 1000 samples each. 180 segments, typically 100 samples
long, were manually extracted from the collection. In contrast with the old signatures, many of

the new ones had a very noise-like appearance, probably due to distortion, dispersion, widely
varying band-limiting, and other effects induced by the transmission channel through which the
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sipgas were received. Furthermore, it was difficult to relate the ground truth. which segregaed
the signatures into II classes, to the observed wavefrm cb

Smlar experments were conducted on both of the afometoned data sets. A high degree
of success was achieved with the old dam: all but one of the 23 signals were classified cornrly.

The lessons learned in both defining the architecunre of the various classifier components and
fine-tuning the associated algorithmic parameters were then applied to the new data. Although a

number of different feature-space representations were tested and a moderate degree of success

was obtained, it became clear towards the end of the second MIPR research program that
information on the underlying physics of the various emitting devices (unavailable during either

MIPR program) would be required in the future to yield reliable classifier performance.
Nonetheless, it was demonstrated that even for a data set such as the new one, morphological

measures provide performance comparable to or better than conventional techniques, and they do

so with less demanding computational requiemens.

The old dam set consisted of 23 signals collected from six different emitters. The signals
from one of the six classes are shown in Figumr 4.1-1. It is important to note that the transients,
although similar in appearance, are never in any way time-aligned or "registerd". The classifier
processing to be described is completely insensitive to the transient starting points within the
extracted segments. (Similar insensitivity can be achieved by conventional means such as taking

the magnitude of the transient's Fourier transform, but at a much greater computational cost).

A high-level block diagram of the classifier system is shown in Figure 4.1-2. As mentioned
above, morphological and other advanced signal processing techniques were applied in the first

two blocks. Variants of an efficient traditional classifier were used for the last block. For signal
conditioning, two fundamental morphological filtering operators, opening and closing, were used

to remove spikes and other undesirable temporal characteristics. Opening consists of a
morphological erosion followed by a dilation. Closing consists of the concatenation of these two

operators in the reverse order.

A two-dimensional example of erosion is shown in Figure 4.1-3. Like all basic

morphological operators, erosion is based on a structuring kernel which is analogous to.a finite

impulse response (FIR) filter. The kernel is "slid" across an input signal or image just as is done
with an FIR filter during convolution, except that each output sample is obtained from the
minimum or maximum (for erosion and dilation, respectively) of the input samples under the

sliding kernel, rather than the weighted sum of those samples (as in convolution).
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Many combinations of morphological and more traditional signal processing techniques
were applied to the-raw signals prior to feature extraction, as suggested in Figure 4.1-4.
References to number of points indicate FIR filter or morphological kernel sizes. As meunoned
earlier, the segment extraction was performed manually. The switches in the block diagram are

shown in the positions which ultimately yielded the best classification performance. They show
that the best signal conditioning was achieved using a 6-point moving average filter.
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The effect of the preferred signal conditioning method is shown in Figure 4.1-5. The fitm

two plots show the extmrcted raw signals for a single class before and after conditioning. Note

that the various signals in t two plots have been time-registared and have had their means

removed for visual comparison only. The third plot shows the conditioned signals as actaily

input to the feature extractors.

Given that linear filtering was judged to be best for signal conditioning, the dominant role of

morphological processing was in feature extraction. For this purpose. variants of a higher-level

morphological product known as panem spectra were used. Like openings, closings, and other

morphological operators, pattern spectra can be applied to data with any number of dimensions

(in our case, just one). They are based on sequences of increasingly larger structuring kernels
which are matched to expected waveform feaures. These kernels are successively applied to a

given signal and the change in area under the signal stored as a pattern spectrum "bin" value (see

Figure 4.1-6). By convention, the change in area due to larger and larger openings are plotted as

positive values on the right side of a two-sided pattern spectrum. Negative values are plotted on

the left for the corresponding closings. (Figure 4.1-6 only shows the openings spectrum.).

lteng Kerhi

K3
K2

InMAWaveOrmKI

1 2 3 =ft

fig.4.1-& Calaziadameopattern specarm.

Pattern spectra have a number of attributes which are relevant to signal source identification.

They are sensitive to small signal substructure such as ringing and overshoot, and are

unh•ampere by repetitive patterns in the data. They are also insensitive to macroscopic attributes

such as temporal registration and overall signal amplitude. Like most morphology-based

products, pattern spectra can be easily and rapidly computed in real-time using special-purpose

hardware based on parallel architectures, and do not suffer from the dynamic range growth

associated with most conventional techniques.
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Figure 4.1-7 sumaie the various fe~ature extracton methods which were applied to the

"old" data set. (A few additional techniques were ap~plied to the new data set. .i discussed later.)

A new type of patter spectrum was developed during the MIPR program and found to beth

best method, among all those tried, for characterzing emitter signatures. It employed

logarithmically spaced pattern spctu (LSPS) bins for which kernel size was increased

exponentially (rather than linearly, as done in the fine-prain (FOPS) and coarse-grain (CGPS)

pattern spectra). The log-spaced patten spectra for th signals from Figure 4.1-1 are shown in

Figure 4.1-8.

Once candidate feature were extracted from all test signals, the were fed into a traditional

maximum-likelihood classifier. Such classifiers assume multi-variate Gaussian feature

distributions chaateie by hyper-elliptical contours of constant probability for each class i, as

shown in Figure 4.1-9. In general, each esimt of the class $1emegaJi$ to which a given
feature vector most likely corresponds is based on the value of i which maximizes the log-

likelihood function

ln) o,)-+-X,,) (4.1.1)
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For simplicity, we assumed that the a priori class prbbilities $p(\aw~gaJi)$ and the
covariance matrx deemnns$flS*=aj were equal, so that maxImizig the log-likelihood

-function from above reduces to nminimzng the normalized-axes distance function

The minimum distance (MINIS) classifier was trained in doree different ways. as depicted in
Figure 4. 1- 10.
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1. LSPS(Z2featues). Ia E b c c d d e e e ee o f f f f f f f
2. FGPS(20feaures) a a ab c cd d a ee ee ee f f f f I f f f 96
3. CGPS(Z0features) a a a b c c d d;e e e e e e f f f f f 96
5. 1&Z(42featurms) a a a b c c dd ee ee e e f f f f f f ff1 96
6. 1&3(42features) a a a bc c dd e e e e e f f f f f f f f 96
4. Z&3(4Ofeatures) a a a b cc d daee ee e e f.f f11 f f f 96
7. 1&Z&3(6Zfeatures) a a a b cc d d ee eee e e f f f ff f f f 96
8. 1 oruned (14 features) larb'la b c c d d 7 e e e e e e f f f f f f 91

(b)

Table 4.1-1 - MINIDIS lmdinbw.1r-mile for aid dim •L (a) Usig mume or median feature vectors for each
din. (b) Waig first femmare vetr for each lm.
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The misclassified 4% of the old data set comprised a single signal from among all 23.

Figure 4.1-11 provides a visual comparison of this signal ("rnmm mmme", from Class D) with

typical signals from its true class ("mmmlmmmh", also from Class D) and the estimated class

(mbs_lbsa", from Clas A). The "tize-constants" and other waveform structure associated with
"mmm mmme" are clearly much more similar to those in "bs_lbs-a" than those in
"mmmlmminmh".

iiiiI.ii 4"3

E a a ac dde ee e f t f f f f f I a a aann. M I
ESTIMATED MWAS BASED ON:

1. LSPS(Zfeatuwes) a-a aabc c d d e e ee f f f ff f f g g gg h j j 97
Z. FGPS(Z0features) a a a bc c d d a e a e a f f f f f f f g gg h h i i ij j 97

6. 1&3(Z4teaturm) ba bc.c d d ae aee e f f f f f f g gg h h i i i ijj 94
4. 2&3(40features) a bc c d d ae ee e f f f f f f f g ggg h h i i i j j 94
7. 1 & 2 & 3 (62 futures) babccd f f f fif f f f g94 ggh h i i j j 4
7. 1&Z&3l(14hteawres) aa3•lbc cdd eeeeeof ft f ft flt ggggh, ,i I , 4
I& I Wnavd (14 featurau) aJ bcd C _I e-e e a e f f f f f f f f a a a a h h 7 2

Table 4.1-2. MINDIS deme rinmb for amade old aadm set.

Morphological processing is attractve for the emitter classification problem not only due to

its capability for shape-oriented signal discrimination, but for its ease o. implementaion and

computational efficiency as well. To evaluate the computational complexity of our techniques

and compare them with more traditional methods, let us define the following:

"* the signal length. L = 71 to 501 (typically approx. 100)

"* the number of bit per sample, B = 16

"* the moving average window length. M = 6

"* the maximum log-spaced pattern spectrum kernel size. K = 64

"* the number of classes, Q = 6

Let us assume that an addition, subtraction, minimum, or maximum computation has a relative

computational cost of one operation, while a multiplication requires B operations (essentially B

additions). The unnormahized short-term moving average used for signal conditioning requires

C,, =(M- DL adds - ML ops (4.1.3)
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For each knel s=e k. tbe log-spaced patm spectrum needs

Cp,., =(k-l)L ,ins +(k-l)L maxs +2L subs +2(L-1) adds -2UL ops. (4.1.4)

TMus, the total com tatio for the log-spaced pamn spectrum is

CS, = t 22 - L) = 2(2'"'(x'' - 1)L - 4AL ops
&mS.4._._ (4.1.5)

TM MNOWDIS classifi

Cd =2(log2(K)+l)Q muls +2((log2(K)+1)-l)Q adds +(Q-1) r-ins

- 2QBog 2 (K) ops (4.1.6)

The total compuatiol cost is thus approximaey

C - (M +41)L +2QBlog 2 (K) ops/ signal (4.1.7)

For the values enumerated earlier, the total computation is dommated by feature extraction. i.e.,

Cl4QMops =27kops/signal (4.1.8)

For comparison, the computation associated with Fast Fourier Transform (EFT) based feature
extraction is

Cmr- Llog2(L) cplx- mul - adds = 4Llog 2(L) mul - adds

- 4BLlog2(L) ops (4.1.9)

For the values above,

C,.r = 43 kops / signal (4.1.10)

which compares favorably with the 27 kops/signal required for the morphological approach.

In summary, the performance of the linear filtering signal conditioning, morphological

feature extraction, and minimum-distance classification worked well on the old data set. The

preferred system correctly classified 22 (96%) of the 23 signals in the old data set. Comparable

results (97% correct) were achieved after also including 12 new sponsor-provided signals. All

processing elements, comprising unnormalized short-term moving averages for signal

conditioning, log-spaced pattern spectra for feature extraction, and the MINDIS classifier based

4-16



WI'ThAPUCTIO OF T GAB=OR RIEM ENTA1ION 'O MUT"ARY PROSLEMS

on class-wise vector means, were computationally inexpensive. The morphological tmnsform
typically reduced signature datm by 90% and obviated the need for tine registration.

r-. ven the succos above, similar techniques were applied to the new data set. Unfortunately,

the class "truth" provided with the new data appeared questionable based on inspection of the
plotted waveforms: signal structure vaned widely between signals in each class and, more
importantly, there were many suspicious similarities between signals in different classes. We
therefore decided to reassign the data to a new set of classes using sophisticated. well-known
classifier tools employing neural network analysis, and then apply our classifier system to the

data with the new, neural net truth. In addition to assigning the signals to new classes-
discarding sponsor-defined class assignments--the neural network program was intended to

determine the true number of classes represented by the new data set. Once the classes were
reassigned. the preferred preprocessing and classification algorithms which were successful on

old data were applied to the new data, and alternate feature extraction methods were developed

and tested.

Neural network analyses are categorized by two basic paradigms, supervised and
unsupervised. Supervised neural nets learn and generalize existing classes and are most suitable
when the class exemplars are well known. In sharp contrast, unsupervised neural nets are used to
discover classes in unclassified data and thus are suitable when the underlying classes are
undetermined or vague, as was the case for the new data set.

The neural network program which we selected for use as our "higher authority" for class
reassignment was SOM-PAK (the "Self-Organizing Map Program Package"), one of the most
readily available unsupervised clustering networks. It was built by the team which developed the

theory (KOHO] at the Helsinki University of Technology Laboratory of Computer and
Information Science. Its one disadvantage is that it does not automatically estimate the number
of classes in the data and thus requires a hypothesized number of classes as an input.

The process by which we reassigned classes using SOM-PAK and evaluated our own
classifiers is summarized in Fig. 4.1-12. As evident in the figure, only log-spaced pattern spectra

were input the neural net classifier, whereas all types of feature vectors were used for testing our

classifier.

4- 17



MkG~ -WOO Uoai ww~

0/

Z

0

CD

c0 0 7

0

-g0J U

CLC

0 C

9I~4.1-12. CQoAie pfffornummc .v*uamdm miing em r~auignm.L

4-18



F i-V T.APPUCATION OF THE GABOR REP.ESENTATION TO MILITARY PROBLEM

The preliminary expemn conducted using SOM-PAK was to search for any degree of
conelation between the sponsor-defined and neural net class assignments for the new data set. It
was hypothesized that the number of classe was 20, a number somewhat larger than the number

of sponsor-defined classes (11), with the assumption that excess classes would be sparsely

populated. Table 4.1-3 consists of tallies of sponsor-defined class members in each neural-net-

defined class. There is no apparent coespondence between the two sets of class assignments.

Had there been any, there would have been only one relatively large value in each row (the first

row contains an 11. a 6. and a 5; the second contains a 13 and a 9; etc.).

sponsor-deflned class

_________ a b c d • f , Ii k TOTA
1 1 3 2 11 3 3 5 0 2 6 2 38

20 0 1 4 0 0 9 13 2 0 0 2 31
neural 12 3 0 0 0 1 1 0 0 0 1 4 10
net 7 1 1 0 2 2 1 1 0 1 1 0 10

cimas 51 1 0 1 1 2 0 0 3 0 0 9
4 2 2 0 1 1 1 0 0 0 0 2 9

Table 4.1.3. TailIia at speuuordelzd cemmdmr in each meunl-net-defined dass.

The next preliminary experiment was to estimate the number of classes spanning the new

data set manually, with the aid of SOM-PAK. Table 4.1-4 illustrates the distribution of the
signal population over neural net classes for varying hypothesized numbers of classes. For

comparison, boxes are shown around values from Table 4.1-3. In viewing the number of

members per class, we are looking for a cutoff (a row number) below which the remaining

classes are lightly populated. There appear to be two dominant (heavily populated) classes, and

about five classes total plus individual random (unassociable) cases.

In the absence of clear information on the number of underlying classes in the new data set,

we decided to evaluate classifier performance for various numbers of classes, as shown in Table

4.1-5. The values shown are percent correct using various types of normalized pattern spectra

(log-spaced, etc.) with training based on mean feature vector codewords. Classes were reassigned

by running the neural net on the LSPS data only once per hypothesized number of classes. The

best performance (76% correct) was obtained by concatenating the LSPS and FGPS feature
vectors, for a total of 42 features.
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hypoteimze number of cms
dmos 12 14 16 18 Z- 22 Z4 26 28 30"

1 62 S6 S2 46 38 33 3 3 28 23
z 38 35 35 34 31 27 Z5 23 23 223 1S 14 12 10 10 11 1Z 10 10o1

78 89787 9 877

9 6 7 7 7 8 7 7 8 7 7
10 5 7 6 7 8 7 6 7 7 7
11 2 7 6 7 7 7 6 7 6 6
12 2 3 S 6 6 6 6 6 6 6
13 0 3 4 6 6 6 S S 6 6
14 0 2 4 4 5 4 4 S 5 5

Tabe 4.2.& Dkorlud=ait populda owe neua no daiu

hypothesized number of classes

class 121 4 16 18 20 22 24 26 28 30
1 62 56 52 46 38 33 33 30 28 23
2 38 35 35 34 31 27 25 23 23 22
3 15 14 12 10 10 11 12 10 10 11
4 11 10 12 10 10 10 10 10 10 9
5 11 10 11 9 10 10 9 10 9
6 11 9 11 9 9 9 9 8 7 8
7 9 9 7 9 8. 9 7 8 .7 8
8 8 8 7 8 8 8 7 8 7 7
9 6 7 7 7 8 7 7 8 7 7

10 5 7 6 7 8 7 6 7 7 .7
11 2 7 6 7 7 7 6 7 6 6
12 2 3 S 6 6 6 6 6 6 6
13 '0 3 4 6 6 6 S S 6 6
14 0 2 4 4 S 4 4 5 S s

Table 4.1-S. MINDIS cdauir performanoe rldative to mural net d= awnisnmeiss.
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features wfartur~s] 9kaoffec
pruned LSPS 14 1 38
log-spaced pattern spectrum (LSPS) 22 38

CGPS of complex envelope 20 38
fine-grain liner-spaced pattern spectrun (FGPS) 20 37

fast Fourier transform (FFT) magnitude 257 32
coarse-grain mear-spaced pattern specum (CGPS) 20 31

FGPS of comple enveloe 20 29
LSPS of complex envelope 22 26
FGPS of FIFT maUgnitude 20 25
LSPS of FFT magntude 22 23
OGPS of FFr magnitude 20 22
fractal dimension 4 19

linear prodictive coding (LPC) modeling error 10 12
LPC modeling error of complex envelope 10 11
fractal dimension of complex envelope 4 10

Table 4.1-6. Fzorat. at aiteomnt fmmre wcdou netmods.

Alternate feature extraction methods were also investigated. The original (i.e., sponsor-
provided) truth was used for this purpose to provide a fair comparison between the LSPS, which
had also been used for class r.eaignme and other types of features. Table 6 compares the size
and effectiveness of the various famre vectors. All pattern spectra vectors were unnormalized.
As with the old data set, the best performance (38% correct for the new data set) was achieved
with the pruned LSPS comprising only 14 featr. Other, much more computationally intensive
signature measures such as FFTs and parametic (LPC) modeling did not improve performance.

4.1.3 Year 3 Effort (Greenbelt Facility)

4.1.3.1. Experiment

In year 3, the second database of emitter data was processed with the Gabor software. This data
consisted of 1944 files which contained several instances of data per file. Many GSPS runs were
made using signal data and other functions as windows. In these cases, the minimum dimension
resulting from the Gabor processing was higher than in previous runs. because the second
database contained much more complicated signals. The identification of which portion of each
file was the signal of interest was difficult, if not impossible without knowledge of the source of
the dam.
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4.1.3.2 Rualta au Obmmrvmdm

After many attempts at classifying elements of the second database, it was dcterrnined that the

second set of dama was unreliable, and the "round uizth" could not be known due to erros made
by another contractor when generating the datn.

4.1.5 Future Work

It is clear that future work on the specific emitter identification problem will be most effective if

the physics of the emitting devices are analyzed and quantified. This was not possible during the

programs discussed above due to the limited availability of supplemental data. It will probably be

necessary to characterize the ransmission channel through which the signals were obtained, and

perhaps the data acquisition process, as well.

Armed with all of this information, it should be possible to implement various rapid signal
classification processing techniques. Work performed using the Gabor expansion signal

dimension was promising, but was not further testable under this year's effort. Extensions might

combine Gabor methods with those based on pattern spectrum and other morphological

di-simian. The excellent results (96% correct) obtained for the old data set of 23 signals
suggest that the log-spaced pattern spectra will provide an effective, efficient method for feature

extraction, in terms of both classification reliability and feature vector compactness. Other

morphology-based features should also be investigated since they can be tuned to signal
"appearance", ie., they can discriminate various shapes in transients in a manner similar to what

human analysts do. Low cost, real-time implementations are also possible, and should be

developed and analyzed with respect to size, cost, and power requirements.

4-22



InW Th.APUCATIOW OF THE QADOR RD REWENIATION TO MEIARY PROOLS

4.2 AUTOMATIC TARGET RECOGNrITON

4.2.1 Problem Deidlon

4..1 Sbatmnt md Imporame of the Probim

The detection of small targets in chur is a problem of critical importance to wide-area, long-
range, InfraRed Search and Track (IRST) surveilance applications. In these applications, he
targets (aircraft and missiles) are typically unresolved and therfore appear in sky, sea and terrain
backgrounds in only a few resolution cells. A resolution cell is the partitioning of the search
space in azimuth and elevation. The number of resolution cells that the target spans is

predominantly determined by the system response of the sensor system.

Figure 4.2-1 illustrates a typical IR system. The target and background comprise a scene.

The optical system images the scene onto the detector array which in turn samples the intensities
of the image. The detector outputs are then digitized and stored in a memory array as the
digitized representation of the image. The optical system is charactized by its point spread
function (PSF). This functon is the response of the optics to unit 2-D impulse functions or point

source inputs. Circular aperture diffraction limited optical systems typically have an impulse
response with the intensity in the focal plane in a radial direction from center given by:

E(r) = 4[2J,(m) / m]2. (4.2.1)

where:

Eo = peak inumnance

JI(m) = first order Bessel function

m = 2x (NA) r/X

NA = (2 F#)-I is the numenical aperture of the system

The system aperture acts as a spatial filter with the above characteristic. bandlimiting the
spatial frequencies passed by the optics. In essence, the pupil function that describes the aperture
is convolved with the scene input to form an image on the detector army. The result of the
spatial filtering operation is a reproduction of the scene with the spatial spectral content shaped
by the optics. In well designed IR systems. the detector array makes use of the lowpass
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charactesics of the optics and samples th image intensities at a spatial raze of at least two

times the cutoff frequency of the optics. This is done to prevent aliassin artzfacts. The result is

an army of data representing the image intensities as sampled by the detector array. This is the

data that must be analyzed to find targets.

Scene Optical System Detector Array Sampling and
Data Storage
Electronics

The above IR system showed a two-dimensional focal plane detector array to simply

illustrate the concept. For several reasons including detec technology, upgrade potential and

cost, many IR systems employ linear detector arrays and a scanning mechanism which scans the

image across the ary to provide the second dimension to the data. This is the mechanism used

in the IRAMMP sensor described below. The angular size of a single. detector in image space

usually defines the instantaneous field of view (IFOV) of the sensor system and the angular

extent of the image.scanned defines the total field of view (TFOV). The amount of time that is

required to cover the search area with the IR sensor and process the data is known as a scan
period-

Because of the nature of the threats, it is sometimes necessary to declare a target within a

single scan period. Thus, this application not only requires an efficient processing approach but

also a robust detection performance in the presence of clutter using only single scans of data.

Horizon IRST systems may not have to contend with exceedingly strong cloud and land clutter

or water glinL This of course is a function of the extent of elevation coverage the sensor

provides about the horizon. In most cases, one may expect low contrast situations in the vicinity

of the horizon. In addition, IR clutter fields are in general both spatially and temporally

nonstationary. This fact weighs heavily on any design of a best filter for detection processing.
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The background data that has been used to test filter algorithms has been extracted from the

Navy's Infrared Analysis Modeling and Measurements Program (IRAMMP) databae. The

IRAMA P database contains an extensive collection of radiometric data including a variety of

backgrounds. The IRAMMP sensor used to gather this data is a dual-band radiometer which

records IR backgrounds in the 3-5 and 8-12 micron bands simutaneously. For each band, a

linear staggered contiguous focal plane array consisting of 120 detector elements is used. The

elements are staggered to allow alignment of the detector active area edges in the vertical

direction. This allows for the fact that if the detectors were mounted in a vertical column with

their edges almost touching, there would be a "dead space" between them where no intensity

would be measured.

The detectors are electrically sampled in synchronism with the scanning mechanism so that

successive samples of the image taken from the staggered elements are registered to the same

horizontal location in the image. The instantaneous field of view (IFOV) of each detector

element is 0.23 mifliradians vertically by 0.22 milliradians horizontally. The impulse response

of the optical system matches this closely. The optics were measured to have 85% of the point

source throughput within 1.09 IFOV for longwave and 1.18 IFOV for midwave. The total field

of view is 1.6 degrees vertically by 5.6 degrees horizontally. The horizontal scan is electrically

sampled 1480 times resulting in a spatial angular spacing of 0.0664 milliradians per sample.

This corresponds to a 3.3 times horizontal oversampling of the image by each detector element.

The sampling in the vertical direction is not as good. being only I times (approximately). The

result is vertical undersampling of the image. with the potential for spatial aliasing artifacts to

occur in the vertical dimension. This is not a problem for algorithms that work only on a single

scan line basis, but the aliasing artifacts could cause a problem for 2-dimensional algorithms.

The vertical problem could be alleviated by detector arrays staggered to give at least a 50%

overlap of the image as it is scanned across the arrays.

The measured TRAMMP detector parameters are as follows: The noise equivalent

temperature (NET) difference is 0.047 OC for the mid-wave and 0.032 OC for the long-wave. The

noise equivalent irradiance (NET) is 2.6 x I0"')1 W/cm 2 for mid-wave and 2.6 x 0-j13 W/cm2 for

long-wave. The dynamic range of the data is 84 dB which corresponds to. 15 bits. Th.

uniforrmity of response across the detector elements was not measured. It is known that detector

point response across the element surface can vary quite a bit from edge to edge. Since the

optics were well matched to the detector size this should not cause any problems. Inaccurate

data results when the optics create a spot size much smaller than the element size.
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The IRAAMP background data can have synthesized or real target data overlaid on it

digitally for testing various filter processes. Several different types of detection filters have been

used to daze with varying degrees of success. For the detection of weak targets in homogeneous

IR backgrounds. optimal. linear. finite impulse response (FIR) filters have been developed. One
such filter is the least-mean-squared filter. The nonstationarity of IR clutter backgrounds

however, results in degraded performance for linear filters. To overcome this deficiency,

nonlinear techniques for point target detection have been proposed. Within the past several

years, a class of nonlinear signal processing algorithms, collectively known as morphological

filters, has been appfied to machine vision problems and, more recently, to target detection

problems. These algorithms respond to the size, shape and orientation of imaged objects using

computationally efficient logic. The result is an improvement in real-time response and target

detection capability over linear filter techniques.

Recent work has shown that a filtering process based upon a matrix formulation of the

Gabor transform holds promise as a mechanism for nonlinear processing for the IRST problem.
The Gabor transform can be used as a pre-filter for the morphological processing. The resulting

combination yields a process that is very much higher in performance than linear algorithms used

in the IRST application. The next section describes the formulation of the algorithm used and

details the results of experiments with the Gabor transform algorithm.

4.2.1.2 Current Techniques

4.2.1.3 Applicability of Gabor Transform

The Gabor transform is suggested for the ATR application because it inherently resolves the data

subjected to it into time- and frequency shifted replicas of a window function that may, within

limits, be chosen arbitrarily. When the data is presumed to include replicas of signals, a Gabor

transform with a high degree of time resolution may be appropriate as an analysis mechanism.

For unresolved target IRST, the choice of a window is simplified by the fact that the system

response to any one target is simply the point spread function of the receive optics.

The optics of the IRST system define, in general. the shape of the response that is expected

at the receiving end of the system. Due to the fact that the system oversamples nine times for
each azimuthal rotation of one degree. the shape of the received response to a single point target

will be well modeled by a Gaussian pulse as shown in Figure 4.2-1.
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4.2.2 ExROMMuzl Imts

4.2.2.1 DdInitio of the Tat Problem

We will now proceed to the definition of the problem that we used for our Gabor transform

experiments. Fig. 4.2-1 is a cloud scene from an MM return upon which we sud a
stencil of targets depicted in Fig. 4.2-2. Th resulting image is given by Fig. 4.2-3, in which we
notice that the targets are not discernible to the naked eye. This is due to the high dynamic range
associated -,ith this particular type of scenario. Next, we extracted one line in elevation that
contains about 20 targets buried in the cloud cover, and used it as a waveform (Fig. 4.2-4). The
data was then put through a 21-tap lowpass filter and the mean was subtracted out, resulting in

the waveform of Fig. 4.2-5, which became the starting signal for our 1-dimensional Gabor
experiments. The question that can now be addressed is whether or not the two-dimensional
time-fiequency representation that results from the Gabor transform aid us in localizing the
targets. Preliminary experimental results and detailed description of the experiments are
discussed in the following sections.

Fi. 4.2-1. •o•d eo•er section.
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After importing the 1024 data point signal described above into the GSPS worksmon, we

proceeded to test different windows and "urnfrequency splittings that might yield results

deemed promising in either signal cleanup or target arrival detection. To this end we began by

choosing the time-frequency split to be 256 time points and 4 frequency points, and used the

Longwave point response of Fig. 4.2-6 as our analysis window. In the two-dimensional map of

Gabor coefficients. Fig. 4.2-7, we can clearly distinguish isolated amplitude peaks corresponding

to some of the target locations along the off-DC frequency lines. One will notice that some of

the spikes have smaller amplitudes than others and some of the targets are not really well
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represented due to tme misalimgment of the window with respect to the signal. Since we have
chosen the number of frequency points to be 4. in the critically sampled case it will be sufficient
to perform three successive single-point shifts of the signal to guarantee that in at least on of the
time shift Ls as well aligned as possible with the chosen window. Figs. 4.2-8 through 4.2-10
represent the three tame shift, in which we can clearly see that different targets line up better
than others for a given shift. Notice that targets that initially lined up best with the reponse
window showed poorly in the shifts. Each signal of interest showed up most clearly in a certain

time shift.
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In order to address the automatic target localization problem. we decided to perform some
simple nonlinear processing to see if we could isolate the coefficients that correspond to the
target locations. This procedure was done in the following manner. First we decided to use the
power of MATLAB to aid us in this task, so we saved the four sets of coefficients from GSPS in
MATLAB format and exported them into that application to perform our nonlinear processing.
Once we had the coefficients we processed the coefficients according to the following algorithm:

Let aO, al. a2. a3 be the set of Gabor coefficients corresponding to 0, 1, 2, and 3 time shifts
of the signal respectively. Then the following pseudo-code describe the process of combining
Gabor coefficient values across the shifts:

for i=l to 256
for j=l to4

sum(j,i)= I aO(j,i) I + I al(ji) I + I a2(ji) I + I a3(j,i) I
end

end
maxval = max ( sum(ji)) for all i~j
level = .05 * maxval
for i = I to 256
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if any ( I &0(2.i) I. ,I al('2.i) I , I &=Z~) I, I a32.) I > kr )
pocefj,i) = 8j,i) for an j

end
and
piot(p=oC.coef).

After the processing has been done. inport the array procof of processed coefficens back
into the GSPS system and reconstruc. The coefficient amap s shown i Fig. 4.2-11 and the

reconstructed signal is shown in Fig. 4.2-12. Notice that all except one of the targets were

isolated, and moa of the cluter thu was origially in the signal has bee= removed.
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Clearly it will take some more sophisticated processing to isolate all the targets and decrease

the false alarms, but as a proof of concept this demonstrates chat the Gabor transform together

with some nonlinear proesig techniques can be of help in the localization of targets in clutter.

Of course more work will have to be done to either theoretically or expermnentally find the

optmnai window as well as the opimal grid distrbution and signal length in such a way that the
maximal number of ta1gets is detected and the oa number of false alarms is recorded.

Other ways to proceed might be to use the oversampled Gabor representation to obtain the Gabor

Coefficients, p the signal further and zero out all the poats that are negative, and to use

the Optimization methods described in section 4.3 to find an optimal window that is some kind of

average of the two window responses that can be expected.

4..23Othe Exeiets

To ascertan that the above observations were not artifacts of the uniform spacing, or results

that were somehow inherent to the cloud structure, we also ran the following experiments using
the same analysis window, the same time-frequency grid distribution, and the same four time

shifts in order to exhaust the time alignment problem. We took the same cloud sample as before

but without any targets in it, and used the same analysis window to obtain Gabor coefficients for

zero to three time shifts The unfaltered and filtered cloud signals are given in Figs. 4.2-13 and

4.2-14a while the time-frequency maps are given by Figures 4.2-15-4.2-18. As can be clearly

seen, the structure that is present in the off-DC lines when the targets are present is no longer

there when the targets are missing, i.e.. the algorithm does not generate false alarms.
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The next experinkent that was performed was the verifiazon that the high ampitud Ciso
Coefficients wom not arafacts of the uniform spacing of the targets.
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Even though the window succeeded in pulling out the targets, the coefficient nap is not as

sharp as the map from the uniformly spaced coefficients. We will now see in Figs. 4.2-25-4.2-
28 that the use of the Mediuniwave esponse window of Fig. 4.2-24 will do a much beuter job of

pulling out the same targets.
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One can easily see from the new set of pictures that some of the Gabor coefficients that
correspond to target locations have been magnified, and some of the clutter due to spreading has
been eliminated by the use of the (slightly) different window. Between the two representations,
all of the targets that are present in the signal appear as large coefficients in the off-DC frequency
lines. This certainly gives a coefficient map that is very similar to the one obtained from the
uniform target spacing, therefore, we conclude that the spiky zones along the off-DC lines are a
true manifestation of the presence of the target and not some artifact due to target spacing.

We also tried some experiments based on the following idea. In the impulse responses
resulting from the longwave. the target will always be brighter than the clutter (this is not
necessarily the case with the midwave responses), and hence all targets will have at least a
portion which exhibits positive values. This implies that we might be able to take the filtered

signal, arbitrarily zero out the points w. ých have negative values, and process as before with all
the necessary time shifts. The result of this extra signal pieprocessing step should be that some
of the clutter will already be removed before applying the transform, thereby cleaning up the
transform coefficient map and increasing the visibility of the signal. For all the experiments
described below we used the Longwave response as the window.

The result of this zeroing is depicted in Fig. 4.2-29. We then chose a splitting of 2
frequency and 512 time points and obtained the Gabor coefficient map for both of the significant
time shifts, the result of which is shown in Fig. 4.2-30 (a) and (b). Analysis using a grid of 4
frequency and 256 time points was also performed. The resulting Gabor coefficient mAp for the
four relevant time positions is displayed in Fig. 4.2-31 (a) - (d). Comparison of the Gabor
coefficient maps obtained from the preprocessed and unpreprocessed signals indicates that the
latter tend to spread the coefficient mass more across frequency and consequently cause the
target display to become more shift invarianL

" a "rfm
oIf

Fig,. .1.2-29. Signalresulting from dhe removal of the negative values of the original iltered signal.

4-43

NU3 I o m n nSlqn tw u n m u la nm mun nn umm nln



Athw ~ ~ ~ ~ C Asop Ekotni a Nut ad

View:
-. coeff
SZaiWSIS)
Szaic(win)

3 Akatczaba

C3Grid

(0.0)

F4 e-4.782woO2 0-4.7710e-102

(a)

*~Coeff

SZak(%vn)

Splot
SMao

(0.0)

Mmax6.825es.-02 0-2.1 34es.02

(b)

fig.4.230. Gabior coeflcewt for the FpRocuineI uiPa with M =512 MWd N 7-2 (a) Coleffilciem for the
undlifted =igod and (b) coeflfmens for the spgal altr time shiftig oun= to the dLet

4-44



FLUI TR.APPUJCATION OF THE GABOR RIEPRESENTATION TO MILITARY PROBLEMS

- Ceetficiasnc (Zak Metho4)

View,.

C3 zakcsigi
C3 ZS4(Witdn)

olo

C3 Crid

(0.0)

m ex-3.470e-o.02 0-1.8450-602

(a)

ceoftfcise wi (ZAkC A90tgod)

View.
af Cow"

C: Zak(%vln)

plo

(0.0)

r4ax--6.2920-02 0-1 .9320-02

(b)

4-45



Almob -dmp IUCrcv~ -

Coo.fefesU Cak Maetd

C3 ZakCSl'u)
C3 ZsWwin)
C3 Ftatcza&*

U.Plot
Cmap

C3 arid
(0.0)

MU N-6.US 70-002 0-2.262oe.02

(C)

Cosricselm (Z ak Method
View,.

C3 Zak(Sle)
C3 Z&WiWln)

ef plot

C3 Cri d
(0.0)

(d)

Fig. 4.2-31. Gabor coefiklmm for the paremu 4sipnalwithM -256mad N 4. (a) -(d) cou upo-mito the

coeftidun for the sigmal after thme sbhithmg 0.-3 poimu to the left repecdvuly.

4-46



Pinin 1R:APPUICATION OF THE GABOR REPREET~O TO MILITARY PROBLEMS

Cefffi wc Ovrsmsfd

C3 Zak(IGCl)
C~ zaidwin)
C3 RatcZaiO

C~ Mao

G rid

(0.0)

MaN-2.531 ee02 0-3.0 140.-02

zJ CowiffIci ngs (OversamolloD)
View:
SU Coefl'
C~ Zakc(Siq)

SMao

G rid

(0.0)

M ).-2.531 a-02 0-3.01,40-02

(b)

Fig. 4.2-32. Omuvmo*W Gabut coificlifts for the proemed signa with M =1024 and N - L (a)

Coefflicifta for the unhiftud smigna and (b) cofidiewnts for the signa after dmn shitig once to the dlt

4-47



AtVUe MmeGPm IsM 0 F Cvpn -don

-. coo",
C3 ZkAsl(SqJ
C~- Zak(Win)
C3 Iatc~aiO

IN P for
C3 Mao

C3 arid (0.0) 

T m

1M~x-1 .6240-002 0-2.91 3e-@02

Fi.4-2-33- O~ersmPWe Gabor coeflldmin for thn pnoesenuihitd = sip.WS wit M IO OW4 n N =4.

=j~Coefficiencs (Oversamo~indU
View:

-, eoff
SZak(Slq)

C3 Zak(Win)
CO RatcZalo

. Plot

C3 map

C3 Grid

(0.0) A& o

F~.4.2-34. OeamndGabor coefilduaum for the Procemed ushifted sipal With M - 1024 and N = &

4.2.1.4 Results and Condusions

The experiments performed herm indicate potential for Gabor analysis as a component of

unresolved target detection, for the MRST problem. Synthetic targets representing replicas of the

receve optics point spread function were distributed both uniformly and nonuniformiy across an
observed cloud background, and were found to be visible in processed Gabor expansions that

favored time resolution as opposed to frequency resolution. There is a robustness in the results

that indicates stability of the findings with respect to the details of the approach.
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4.W Future Work

Extensions of the current work would emphasize several things, among them further theoretical

studies to gain an explanation of the moderate suc observed in the reported en.

Because of the time resolution inherent in the oversampled approwh further experimens with it

are warranted also. Application of the techniques to additional dam sets could be expected to

enhance our understanding of the perfomance as well as uncover areas where the techniques

shown here are either inadequate or in need of support from other methodologies. in particular,

we are anxious to investigate algorithms which combine the power of Gabor methodologies in

producing data that exhibits signal detection in a few large coefficients and morphological

filtering to aggregate the observed points and replace some "human operator" functions with

machine capability.
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4.3 MINIMUM DIMENSION GABOR

Under contract to DARPA, AAEC carried out Phase I and IH SBIR studies on the topic of
"Minimum Dimension Gabor R.presenaons." This wait drives at obtuang bor expao
of a set of signals in which the majority of the information about the signals is concenIatmed in a
few large expansion coefficients. Methods of nonlinear .oamizazion theory am employed in this
quesL The work carried out under these contracts produced very positive results leading to two
conference publications (SWEE, ORR], but did not complete the needed research. Some of the
research extensions were carried out under this contract, and their results are presented below.

In the following paragraphs we summarize the problem statement, the theoretical results
produced under the Phase I SBIR and the numerical algorithms and results from Phase IH.
Following this the new work performed under this contract is described.

4.3.1 Summary of SBIR Contract Effort

4.3.1.1 Problem Description

Series expansions of signals in which significant features of the signal are captured in a few large
coefficients are desirable. This work shows that given a collection of signals, it is possible to
find Gabor representations for these that are maximally concentrated in time-frequency space.
The problem addressed is: given a signal set, find the window function of the Gabor expansion
that minimizes an "average dimension" of the signal representations relative to that window.
The- dimension measure employed is entropy based and related to the quantum-mechanical
technique where one interprets expansion coefficients as probabilities.

An iterative algorithm based on partial derivatives of the signal set dimension with respect
to the expansion function was used to evaluate effectiveness of several nonlinear optimization
algorithms in finding an optimum window.

4.3.1.2 Phase I Accomplishments

The key results of Phase I are presented here, and the reader is referred to the final report
and a conference publication for details (AAEC9I(2), ORR]. Key findings include:

• Proof that the notion of "dimension" is, for a single signal, completely arbitrary, depending
wholly upon the choice of representation and not at all on the signal;

- A convincing demonstration that where a set of signals is concerned, the structure of the set
bears an inherent relation to a dimension that can be assigned-this dimension remains a
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function of the representation. but can be minimized over quite general subsets of all basis

functions:
"* Recognition that the constrained structure of tune-frequency basis sets such as the Gabor.

affine wavelet, etc., make these ideal classes of bases over which to carry out the

minimization of set dimension:

"* A determinaon of a reasonable set of requirements for the definitions of both signal and

signal set dimensions:
"* A derivation from these requirements of a signal dimension formula that is unique to within

a single parameter and a set dimension formula that is then unique to within the assignment

of a weighting function-the formula combines the quantum mechanical relationship of

expansion coefficients to probabilities and the information theoretic notion of the entropy

of a probability distribution:

"* Successful implementation of the signal dimension measure within AAEC's Gabor

processing software tesrbed (GSPS);

"* A useful, though incomplete, classification of signal set types in a manner that motivates

physically meaningful choices of weighting functions for dimension assignment:

"* An extensive compilation of examples of basis set constraints that would allow

optimization over more restricted subsets of Gabor or other representation families:

"* Development-via use of Poisson summation and the ambiguity function-of new

characterizations of Weyl-Heisenberg frames (the immediate generalization of Gabor

representations) that should make it easier to perform dimension optimization under

constraints within these structures.

These achievements set the starting point for Phase 1I. Having successfully formulated the

dimension concept and the associated minimizion problem. the immediate need was.to discover

the extent to which analytic machinery can be brought to bear on solving the difficult nonlinear

optimization problem we have created. For example, in basis systems that are defined by a

single window function, which include most of the cases of interest-Gabor, Weyl-Heisenberg,

affine wavelets. erc.-the solution consists of determining an optimum window. If there are

sufficiently restrictive constraints placed upon the class of eligible windows, it should be

possible to obtain solutions that not only minimize the cost function, but have other desirable

behaviors as well. If we can obtain analytic answers for some simple but nontrivial cases, the

utility of the techniques will be enhanced. To conclude this aspect it is important to achieve a

software capability that implements the optimization algorithms that are found.

4-5'



Aftnft Awap Mop's Ikcem Cwpardk

4.3.1.3 Phase 11ACODISDUt

Phase !l concentrated mainly on application of a concept put forth under the prior phase

(AAEC92(2)]. New theoretical developmets were limited to only thse needed to carry out the

opu,,,a-ons or to interpret results. TIm main t•eoretical idea is of course the development of

the discrete domain cost function for oimizaton and the choice of op0mizaion variables.

Carrying out the optimizations over the biorthogonal function has proven quite successful, and

has efimuintd an m ite computational burden, one that could have been quite expensive.
were the window itself directly optimized. We see nothing in the results to prompt any revision

our underlying methodology.

The final theory topic is the evaluation of computational complexity of the dimension

functions. We found that a dimension or gradient evaluation for one signal is an O(P 2) process

(recall that P is the number of points in a signal), whereas a Hessian computation is O(P3 ).

These are reasonably high orders-think of the effort people will expend to replace a traditional

order O(P 2) Fourier transform with an FFT. No pressing need to rely on great numbers of

Hessians has been uncovered, so we can probably say with reasonable confidence that the per-
signal computation caps at O(P2). No analysis of the adaptive algorithms was attempted since

there are so many variants, and the run time is data-dependenL

Initial experiments using a local gradient method were very successful in demonsag that

iterative techniques can converge to a good solution. A number of other things were observed

from these as well. Convergence to a suboptimum point, i.e.. a local minimum, was seen
occasionally, and in some circumstances the answer was a very plausible candidate. In some

cases the converged biorthogonal caused the Gabor coefficients of the signal to be dominated by

a single large coefficient located somewhere other than the origin, the resulting window was

either incalculable or did not resemble the signal. This circumstance, should be regarded as a

successful intermediate result from which the search for a more properly behaved solution can be

sought. Only partial success in carrying on from this point was achieved, leaving this,

circumstance as one of the candidates for further work.

The more appropriate experiments using the optimization techniques of Matlab and NAG

yield further confirmation that the process would work, but some more surprising results were

found. Most startling among these is the observed convergence to highly unstable answers.

There exist cases for which a solution of dimension 1.0 is found using a window having a very

large dynamic range of values, on the order of 105 in some cases. In general these windows

tend to pile up at the end of the interval, and yield Gabor coefficient distributions in which the
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large coefficient is offset to the last time point but not offset in frequency. The instability of

these is seen when the attempt to reconstruct the signal in GSPS after clipping off the low

coefficients fails violently, apparently due to numerical errozs. The NAG routines usually reach

a happy termination in these cases, confirming that the cost function being used is insensitive to

the behavior.

In other cases, the optimizations terminate at low (well under 2.0) dimensions and find

windows that resemble the signal except for some usually spiky irregularities. Thes runs seem

to be finding local, not global, minima, and are cause for some concern, because the excessive

behaviors of some of the other undesired termination types are not present here. On the other

hand. the results are not unusable. Convergence to slightly suboptunum answers may in many

cases be almost as good as finding the best answer. Although we would be well advised to

understand the phenomema at work here, it is not clear to what extent these results represent

problems to solve in the future.

The issues raised by the single signal cases remain when multiple signals are present. There

are cases in which the window 'blows up' as described earlier, but still yields a low dimension

representation for each signal.

In other respects the results are encouraging. In this light we cite the experiments in which

the optimum window was sought for a signal set containing time translates of a decaying

exponential. The dimension of such sets was computed for families of exponential windows,

and the intuition about those results is that the exponential window is not quite optimum. It was

not until the multi-signal optimization code was working that we could look for the optimum in

such a case. When we did, we found a window with strong exponential characteristics that stably

represented all eight signals. The dimension of the set was similar that found with the best

strictly exponential window.

New issues encountered during the multi-signal runs relate to computation time. The effort

* to compute dimension or its derivatives scales linearly with the size of the signal set. and there is

no apparent way to decrease this. Overall run time is somewhat unpredictable despite our

understanding of the computational burden of dimension-related evaluations, because the number

of evaluation calls is both data- and method-dependent. These observations tend to confirm the

suspicion that optimum window analysis is an off-line activity. This is not at all a poor finding,

given that many of the envisioned applications of the techniques--e.g., signal detection and

classification---might fall into such categories.
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Results of the Malab minimization runs indicate that the choice of algorithm is somewhat

data dependent. From the six algorithms tested, two minimized the dimension in all the

experiments. and the other four algorithms failed for certain experiments. Therefore the first two

algorithms can be considered more reliable, but not necessarily the optimum in all cases.

It was also observed that the number of iterations was reduced by using the gradient if it was

available. When the gradient was supplied, the Cubic Interpolation line search method was seen

to perform better than Mixed Polynomial Interpolation; fewer function evaluations were

performed, but more gradients were evaluated.

The Simplex Search minimization method performed the worst, resulting in a successful
minimization in only two out of six experiments. In the two where it did finish, the number of

iterations was the largest of all the methods.

The NAG optimization routines have been shown to be capable of determining Gabor

representations with minimum dimension. This capability has been demonstrated both for

simple functions and more complex real world signals, and for single and multiple signals.

The initial estimate of the biorthogonal is only marginally important in controlling if. and

how efficiently, the optimizing routine finds a solution.

In general. the quasi-Newton optimization method employing a user supplied first derivative

of the cost function (dimension) yielded the best results. It required fewer iterations to converge

than the quasi-Newton method with the finite difference approximation to the first derivative,

and ran considerably faster than the Newton method which employed a user supplied second

derivative. Each method seemed equally capable of finding solutions.

Linear constraints on the cost function during optimization were helpful when a priori

information about the biorthogonal was available. For the more complex transient signals, where

the optimum biorthogonal is not known, linear constraints were not helpful.

The best number of frequency and time points (M and N) for a given number of samples

depends somewhat on the signal. For signals with detailed features near the beginning, better

solutions were generally obtained when M > N. For signals without meaningful content near the

beginning, M < N generally produced better results.

Solutions were found for the multiple signal experiments where the average dimension was

less than if one of the signals were employed as the window function.
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Use of the free parameter in the dimension formula (exponent r ) was not fully exploited in

the tests, but we were able to determine some consequences of varying it. Larger values of r

were found to speed convergence in cases that were already convergent at smaller r. Large r

tends to empiaize the greatst Gabor coefficient and push the distribution towards the desired

shape, consequently, the optimize sometimes behaves as though its job has become easier, and

presents results that appear to have stopped short of reaching the 'eyeball optimum.' The overall

conclusion is that low r is the most sensitive case, and may be best for fine tuning a result, while

a larger value of r might be used to get to the vicinity of an acceptable solution. Algorithms that

automatically adjust r en route according to criteria related to thes observations can be imagined

for the future.

4.3.1.3 Conclusions

We have shown that it is possible to begin with a collection of signals and find a Gabor

representation of these that is maximally concentrated in the sense of the dimension function

defined in Phase I. Some of the computed examples show significant differences between a

window function found using optimization techniques and a more naively chosen one, some do

not. As expected. the techniques developed here are not automatically candidates for every

application. Instead, they provide a body of technique that may enhance the ability to carry out a

few procedures. Further evaluation must await their application to some tasks.

4.3.2 Extensions Under Current Contract

4.3.2.1 Optimization Tools

The extensions under this contract were a continuation of the nonlinear optimization experiments

using a more complex and powerful NAG routine. E04UCF than the previously used algorithm

E04KAF. The important properties of the E04KAF routine are displayed below:

"• Quasi-Newton algorithm

"* Uses analytic gradient (first derivative)

"• Builds up surface curvature information (Hessian, or second derivative)

"* Incorporates bounds on independent variables

The NAG routine. E04UCF, is more powerful because it allows the user to control more

optimization parameters. It performs nonlinear optimization. including bounds on the variables.

linear constraints, bounds on the linear constraints, nonlinear constraints, and bounds on the

nonlinear constraints. It uses a sequential quadratic programming algorithm in which the search
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direction is the solutio of a quadratic proramming problem (NAG). Its propemes are listed

below.

"* Sequential quadrtic p mm algorithm

"• Minimlize smooth nonlinear functon subject to contait
"* Takes analytically specified first pfrtials
"• Approximates unspecified first partias by finite diffeences
"* Incorporates linear and nonlinear constaits

"* Incorporates bowds& on independent variables. linear constraints, nonlinear

4.3= Expiment

Numerous experiments were performed with the E04UCF optimization routine to determine

average windows for several test cases.

The NAG routine E04UCF was used with several combinations of bounds, linear and

nonlinear constraints. Experiments were performed with two signal sets: a single signal, and two
signals. The one signal case used a real signal chosen from the first data set of the fault

identification section, with a Gabor lattice of M = 4, N = 16. The two signal case was composed

of a rectangular pulse and a decaying exponential, with M = 4, N = 4.

The bounds and constramts were chosen from the available set of:.

"* Bounds on the variables

"* Linear constraints

"* Bounds on linear constraints

"• Nonlinear constraints

"* Bounds on nonlinear constraints

The choice of these bounds and constraints permitted the control of the minimization process to

avoid convergence to unstable results.

Three types of constramts were used and they are described below:

4-56



plum TM-APPUCATMO OF THE "MDR EPMESENTATMO TO MILITAR PROW.EMS

Type 1: Nonlinear. Restrict exponential groiwth of biorhogonal signal envelope

Desired constraint is of the form shown in Fig. 4.3- 1. but hard to use because of lack of

Smoothness

max{jIjjbi '~ 2 jjb~3j, 1b4j} a max{Jb, I, b6j,lb.j, jb8 I}
max{1b 5j1, b6 j, b.j, lb81} a max{1b91, jb10 l Ij 1 }

rnaX{1b 9 -, IblO, 12bA1 11, A21 2 :} a MaX{Jb 13 I, I J' ~b15 ,I~b16 1}

*Max magnitude point of group
o Non-maximum points

fig.43-i Nouimilercoauumtrait tatcntrolexpousutalgrowt of the borthogoumal outhe asisof the
larget magnitude value within each Gabor time sfice.
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Thus type of conmaiunt was replaced by poiiwis omprsn as sbown in Fig. 4-3-2.

Jb~l> afb~J, 1b21 > alb6I, I1'31> afb7j, 1b4l > alb.I
Ib~l> ajbgj, Ib6l> alb101,, I~7I > alb,111, 141 8> a'b121

jb9j > aVNi3lIb' o 1b > alb141, Jb~lj> albl1I, Ib12I > alb161

F.4-3.2 Nomfilear cou.usnat dt cact wanis eapossWa growh of the biorthogoutal on the bask a( the
inagAUtdw pomt-by-Point wihM each Gabor time skw-
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Type 2: Nonlinear. Controls dynamic range of biorthogonal within first Gabor tame

mterval. The need for this can be seen by examining the inversion that creams the window

function from the biorthogonal in the matrix Gabor method. Not usable due to non-

smooth . Not needed thus far. -

maxilbi:l

FI••.-3.Nolilrmlmmithltbrh , tl f•al' i v1

m-ax5b9j}

ftg 4-3-3. t4.llmemr consralmt tha control rumpe wdthi fth Am Gabw time iwmewL
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Type 3: Linear: Restrict positive expooeial gwth ofbi ogal

bl >xOb1 3 b2 > b14 j b3> ab151 b4 >ab1 6

ftg.43.4. Lbanrwuuuuiua ht mcuvokmlnepm~t~agrowh at the bkatbop ~ualemthebmd atbte argest
magiutlaf ,eW= w the &wt amd las Gabr time dim.

The objective, or cost function, computed the minimum dimension of the signal set for each of
the experiments shown in the following figures. For the single signal figures, the initial

biorthogonal was a rectangular pulse.

The single signal cases were made with a transient signal from the first data set. Fig. 4.3-5

shows the constraints used, the signal, minimized biorthogonal. the window, the Gabor

coefficients, and the dimension was found to be 1.06. This appears to be an excellent

minimization result, because the dimension is very close to 1. However, the resulting window is

a single negative spike with amplitude of 1.7e+21, not a useful window. This is the result of

convergence to an unstable minimum. This indicates that the minimization process needs to be

constrained to avoid convergence to this kind of unstable minimum.

Fig. 4.3-6 shows the same case as in the previous figure, except that the NAG routine E04UCF

was used, and nonlinear bounds and constraints were applied. The resultant window was

reasonable, and the dimension was stil low, at 1.75.
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Several experiments were performed with a two signal set: a rectangular pulse, and a

delayed exponential. For all of the two-signal minmiton experiments, a random initial

biorthogonai was chosen. This initial biorthogonal and its corresponding window are shown in

Fig. 4.3-7.

Before attempting to find an optimum window, each of the two signals were used as a

window in the computation of Gabor coefficients, as shown in Fig. 4.3-8 and 4.3-9. In Fig. 4.3-

8. the pulse is used as a window, which happens to be the same as the biorthogonal. The lower

coefficient set reproduces the pulse, and the upper set reproduces the exponential. The average

of the two dimensions is 1.98. Similarly, in Fig. 4.3-9, the exponential used as a window results

in a average dimension of 1.503. What we are looking for is an optimum window that produces

a minimum average dimension. Figure 4.3-10 shows the optimization result using the NAG

routine E04KAF, which uses bounds on the variables only. The resulting average dimension is

1.496, very close to the previous case.

The next experiment (Fig. 4.3-11) used the E04UCF method with bounds on the variables

and linear constraints with bounds. The four linear constraints used were the Type 3 constraints

mentioned earlier. The result was D = 2.00, showing that this type of constraint did not succeed

in decreasing the average dimension.

Figure 4.3-12 shows the result of using bounds on the variables and twelve Type I nonlinear

constraints with bounds. The average dimension is lower, at 1.887.

The value of m, the coefficient in the Type 1 constraint equation was then changed from 0.5

to 1.01. The previous case was run again, resulting in Fig. 4.3-13. The minimized biorthogonal

was constrained as expected, but the average dimension was higher. The same case was run

again with alpha = 1.02. with the result shown in Fig. 4.3-14. The average dimension is now

lower, but the biorthogonal has changed to nearly a rectangular pulse.. Apparently, the

optimization algorithm is very sensitive to changes in the constraint function.
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4.33 Observations

With these additional optmizaton runs, we have managed to miimmze the dimension where the

biorthogonal function previously did not converge to a reasonable state. The addition of

nonlinear constraints and bounds, along with the sequentl quadratic miu•muzanon
algorithm, has given us much more control over the optmizaion process. It was observed that

the minimization can be very sensitive to changes in the constraints. This was seen in the

significant change in the resulting window function resulting from a small change in the value of

alpha in the nonlinear consmint equation.

4.3.3 Future Work

The work presented above makes a positive extension of the results originally obtamnid under the

SBIR and provides further justification of the ideas that first lead to this line of endeavor. The

task remains unfinished, however. Research to date has not completed the task of determining

the best constraints to use in optimizing windows, and the bugs in using the optimization

software have not yet been completely worked out. Work has been slowed somewhat by this

situation. Using simulated annealing for optimization has also been suggesat and AAEC is

currently looking into available software packages for that purpose.

In summary, the effort so far has proved in principle most of the supporting concepts, but

has been insufficient to transition the work into the applications arena as yet. AAEC sees

particular promise for this technology in certain Applications areas, and is planning to propose

effort in those areas. A key area is automatic target recognition (ATR). Initial work in applying

the Gabor transform to problems within that discipline is reported elsewhere in this documenL

Machine-aided recognition problems have the feature that searching for objects can be enhanced

in circumstances where shape characterscs of the objects are partially known in advance, either

through a priori knowiedge or data-aided algorithms. For example. in signal analysis, the Gabor

transform is particularly adept at finding features having a common envelope.

To maximally exploit such a circumstance, extraction-of the analysis window from the data

looms important. Given a large body of data such as that often encountered in an ATR problem,

use of the data to drive the analysis functions seems wise as a measure to cut the amount of blind

search, especially in view of findings that allegedly more "robust" tools such as the Wiper

distribution can create artifacts through nonlinear processing if not used carefully. The role for

optimum Gabor windowing in this scheme is clear, and as a result it appears that the best way in
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which to continue the line of work discussed above is to do it within the context of an application

area such as ATP.

The research is at the po-nt wbem it could profit from the interaction with real data as an aid
in algorithm developmenr/refineent. AAEC anticipaes proposing a body of work of this

nature as a logical follow-on the work performed in both this contract and the cuied SBIR's.
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APPENDIX A

STATEMENT OF WORK

AAEC will perform the following work i=ms. segregated by year.

Year 1:

Proposed Theoretical Developments: Study methods-to improve the stability and
accuracy of the Gabor coefficient computaions; perform error analyses to understand the
accuracy of approximation achieved by trucased, finite Gabor expansions.

0 Software Development Develop software code on a GFE Aspen computer to execute
the new algorithms for Gabor analysis. This includes full debuggin and achieving operational
status.

0 Comparative Analysis of Competing Methods: Investigate the utility of competing
methods, including other double series rept ons Wigner distributions, non-abelian
hammonic analysis, ew.. for the problems under atac.

* Potential Applications: Begin to investigae potential application of Gabor
repesentations to military problems. and use the tentative results to guide the needed
theoretical developments. Test problems to be chosen from those in the proposal

Year 2:

* Potential Applications: Continue to investigate potential application of Gabor
representations to military problems. and use the tentative results to guide the needed
theoretical developments. Test problems to be chosen from new areas discovered dunrng
first-year investigations and discussions with interested paries at DARPA and elsewhere.

• Software Upgrades: Maintain exisUng software and add new capabilities as needed to
iprove ability to model potenuta applications

Year 3:

* Continuation of Year 2 work items.

Full Statement of Work disclosed to DARPA and available upon request.

A-I



astn MWrop massnf -W~r

A-2



Phb TMAPPUICAflON OF Thu GAOMR WMWIMTIfON TO MtJTARY PROULSn

APPENDIX B--

ACCURACY AND STABHIITY PAPER



B-2
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COMPUTATIONAL ACCURACY AND STABILrTY ISSUES
FOR THE FDM DISCRETE GABOR TRANSFORM

Regelw Balm and Rwchawd S. Orr

Atiantc aope ectronics Carporwon. 6404 Ivy Lmane. Sune 300. Grenbelt. MO 20770 USA

ABSTRACT If the modulus of the Zak ransform of w. VZ*. isA Gabor e~xpamon May elnptloy highlyinv hgm

basis functions and consequently inherit accuracy and constant almost cverywh the w.j are orthogonal
stability problems due to near-singulaty when comptned and well behaved. When MiZ has a mail dynmc ranic
digilaly. Two methods to discreaze the G tlaonm (small ratio of its maximum and mimmum values), the
are stauied from me viewpoint of controlling numerial expansion is nonortbogonal but still quite stable. The
proonens: (i) a Zak tunstorm-based method and (ii) a difficult ce is whe Zw has a zero witin 0 S t<T. 0 Sn
ma ethod9 Theoretical issuereltiUngtoUhesingular < lf. Tw formal expression for the Gao coeffam
behavior of each awe cued. and sabilizauion techniques we
prooobed. We demonstrate the validity of each •mcunuue Vf
with results of numerical experments. concluding that af f " - ecp(j2x(nvT - m I/ 7)•JdTd. (3)
suaility and accuracy can usually be achieved in a 0 0 ZW(v. •)
digially impiemented Gacor ransform by prop= choimc
of algorithm and stabilizaton ncaans, does nam tm nmcsarily represent the Fourinr corffickims

of an L2(.J) function. and it implies an expansion for

L. INTRODUC7ION ~whic de above equation does not always yied a reliable

A Gabor expansion of an L2(R) functon is a doubly btasi foreumm e'auation of th a,..J.
For computation by the Zak method (3) must be

in e series of the fori replaced by a fnie. discret equivalent. Any algorithm
for dis has th resultf(t)- (t")

,n,,.--te.,m--w te o •-* Zu .) exp[j2mnv1 T - mnP I T)j. (4)
in winch the Ia.,) am the Gab•zor coeffiema, and the

Sampling and perodizanon can be applied in a way tint
fswlo.L w(t), tha an the basis of the expansion. The m nm of , c tothe M e
propemres of the expamion am higly dependent noo the expansion [1. 21. In this p we conder t nm
behavior of the window with respect to the time- mosdiscre by amoling and tuncon.
fnreuecy lattice 7(,,:,)) - t(m/ T.n")J that supports Most or the continuous am enaccuac/stability issues
the bausn. The paaeter 7 Z 0 mitinuams me time and carry over to the discme case. In particular. it is eay to
ftreuencv resoniton of the tns ,orm. May of these see in (3) the unact of a zero of Zw. Even if Zf and Zw
properies are readily expressed in tems of the Zak have a coinciding zero. the ntio Z#Zw may not be wel
maniOr of W. defned. When V.e* maxes a close appro ,n to zoo at

some grid point. the ratio can become very lare there.

Zw( .') - w(kT+ r)exp(-j2A*vT). (2) and dominate expression for t coeficienm Ways
km~ -r) - R comNol usM, orm with Zak re an given an section 2.
____________________A second approach is to tetthe sampledeqain

This anmm was u by 1 Advm d Rmam P1 s for the Gabor transform as a mam and solve for the
Agency ote Deuarnment of D ns mmd was mae-md by me =efficient by matrix inversion. The -saucre of the
Air Forc Office of Scientafic Resear u on No. matrix is such thm the inversion can be performed
F49620-90-C-0016. The United Sut Governme is affl ci v fr3. 41. For reasm of coinpeteuness. we will
aidiofzlo to rmr, moPP and dismrme snm.m for moverum"m now introduce the rudiments of the matrix Tormutlaon. If
maruqsea notuimsanoin ny copy-gli nomano mnon. one starts with fe Gaoor transform given oy (1).

B-3



AIIantHc Aenomaca Eisaroics Corporsanls

uniformly usampsf at every A4I a 7/ Mf4 n4k ( 7/ MA If Zw box a ai n the PuL the condition rtio winl be
km I A....MNmP. and truncates the expansion after P inini mUUad the - krur noonmnuibie. Restmcmd to (9),
paIns One omtains; the mepsnuuoa C mned not be ammmi who ($I 15. Wing the discet

trmsfwm possibly be mare ic than the coanuous.
Al-1N-I Three iMiedwe of suabiliung the daacreat tansform

f(ik)- 7 TamW(Ik-peT)exp(j2xmtIT) (5) amilustrsd. We so wih a acremdomnainwindow
ZuO -ZO having a Zak transform zero an the grid. In the tint

imhmod. we move the wio of the Zak transforni off the
Which can be writen in Matrix farm as grid bry a subde change in the shap of the window

function. The seond method is to apply a unit andkir
F=WE )A. (6) frqec translation to di original winoow thUt reioiu

the Zak zeo acoding to the formula

whsere Fand AameP x Icoituinvetorcorresponding to ZfIoe~ # 9
the signal and the Ireorderad) coefficients epetveiy,
and W and E are P x P matrices corrmuonding to the e~vrr~~V,~~.(0
values of the window anid the xloeeb associaied with
the rotations around the unint circle. As it turns wt. theA brmehdstoeaitewnowfcinbu
matrix W is block lower trianigular and each of th Ashub-ho st eantewno fnto u
blocks is diagonal. The sub-blocks whc ieo h change to a new grid on which the zier no longer lie.
diagonal are all equal and correspond to the values of die 2. q fm
window over the first M pains, and sumilarly all the sub.- The wuMnow function emloyed for the experiams; as
blocks on the 10 off-diagonal we equal and conumi the M
values of the winoow after skipping over LME - I paints. iv(r) - r CXp(-a-u) (M01)

The mum E also has a particularly amc farm. It is
block daigonal. all of the sub-blocks ame equal. and the whr a is a poisitive decay consmn and u is the uit, mup
entres of the su-blocks; are the entries of the Fourier fmco at the angie The Zak uusomof (11) is
rotation matrix. Consequmntly. E is invertible anlytically.
With this in miund, we can solve (6) for the unknown
vectr of Gaoa coemasusa and we obtai C ?*(T _ )C-4.~2XV~T1'

(7)-W-I MzFV.T t1--- e jxvr (2

Since the inverse of E is anatlytcafly calculaind and wedl whc has a single first-order zero at the point
behaved, the stability issues we solely asaocmated with the
imverubility of W The sutruwre of the inverse of W and v 13
the resulting stability issues will be discussed in section 3. (V 217 1+e"4 J13

2. ZAK METHOD W RDIOME Not=c that the zeo lies on a frequency grid point whe
3.1Thaey the number of frequency points ME is eves. but the tme
The stability of a continuous time Gabor erseion location of the zeo is arbitrary withzin (T/2. 7).
can be gauged by the sumof theeai For anN by M Gaboruanf 1 L the values of alying

on fth grid am obtained from (13):

C a.SVIr.%TC (8) a -m -h 0<m<M/2. (14)

The following experimentsuse N al6. M a16. Fig. 1
whinch acm as a condition amber of the transform. Thu shows the window, and Fig. 2 shows the Zak trudanfrm
nmfber is also the frame bound ratio of the trnFrm n(5]. far the choic a - - 1.94591. Because of single-pmuo

When implemented by a discrete Zak method, the roundoff in the calcuafaton, the condition number (8) is
Gabor trmnsformin s characteiezed by the same ratio 8.523 x 1015 and not infinite at this yoint. If we cos
sampled on fth ame-frequmncy grid, die decay comian according to the formula

Ymn/Pfl.?inmTIM:0Sn<N-..i.Sa<M -l. (9 amLi(2.i 1 415)
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an Zak ngo will lie midway baee: grid - poiu For th• am, ,-
conom a a .1.6840. we find the Zak Wannron shown in
Fig. 3 with•condioon numoer C a 4.175 x I02 0

Viv
"-' W--WIW

. I1 T=

Tim• -oom"_ _laws". I

Smine- - Fig. 3 - Zak tromooin oi the awiaits wmnow.
"" 3.20-o01 weere the amaucai zero noa wen moved off tat

gsid by ,W1usmu the toe coausa Th cowditm
umejr a disnawved on te lower ,eft iana corner.

Fig. I - nAAWU WaOW ;Rn,..u ase awinnW

*"m a a -a

o cow

smm"

....................

TW Fig. 4. Zak transormn of the wondow after the
g iuh eicai oero h.as been moved off toe grid by

Fig. 2n - Zak tranui. . of time window. The seiauing thoe w.now arrivai tmenc The conduono
i rut, ortns has an a nuamvtaei zero oR a tune wmor a ow on thie lower it llhna coenter B
frequency grid Point. T7he condition numb~er is

ltaw to .8 t l hn rs e3. MATRIX METnHOD EadRME .T h
The behavior of .a tranisform having a Zak zeto near 3. b"

the grid is owmt sensitive W dhe choice of a. Fo exmpe As we enunoned earlier, the sraoilizv of a discrete tm
choosing a - 1.94590. a chante in the 50 signficant manwx Gabo2r rweseitation devends only on the inverse
dig1L cha:3es the condition number by 4 orcers of f~ w ~ ~ ~ ewl eot yBdet

magitue t 1.18 JO Whn te ZrO S Ped the bionthogonfiary relatonsnao oetween B and W. The
midway between Ind points the sensitivity is much less. frm of ,s idencal to de toni of W. and its rimes ar
for example. both a - - i .68640 and a = - i.68641 yield C
=4.175 x 102 to four significant figures. given by te aecunnve re:aton

Fig. 4 illu-trates one application of our second
method: the window having the on-grid zero is tume- B u-Wo-(WtW -' - W1_,B1 -,...-rW1B,_ 1) (17)
oel.v~ed by T/2. (one-half sampae) beiore sampling. and
as a result the condition numoer (8) of the Zak ransform whometsubunpt 1=0.1 ..... Ienotes the disance of
becomes C - 2-513 x 101. the block from the main dii agonal. Cleaiy the only paw of

Experiments showing the third method of reiocatng W tha get inveried is ame block associated with the first
the zo of the Zak transtorm oy means of a grd change H points of te winaow function. and therefore., a
are not included due to space limitations ssmy condition for inveribiliry is that the winOow be

nonzero everywnere in nat regon. Even if that condition
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is satied.. it does not imoly tha the matrix 8 will be allkvi some of the p nblems mcmind with the Zak
wall behaved. Notice that as we proceed fwurter Gowf te Im' of the window having a wo somewhat, in the
off diagonals. ze. asa Ies larger. th last wtr in (17) will regon of Inurta As we have shown in the above
be multiplied by the i power of the inverse of W. This experments. the existence of a second method to
essentially mom that compirmavely small values of the calculate the coefficients does not guarantee a stable
window over te first M points can lead to values at the cod et set. -
tail end of the biosthogora which am udestreably hrge.
A measure of te stablity of he window can at least W
empirncally be characteried by the biorthogonal having i.
no small values over the first M point, compared to te a 1
values over the rest of the window values.

The wdw funcon used for the miam exoenuients i Mg f .
we same as he window used for the Zak method ,

experiments with the time constant corresponding to ~
placing the zr of the Zak nansform on one of the grid in. .
points. If we choose this window a is. we know a-priori 2 I
that the biorthogonai will be infizute, since our window lamp.function has an anWlvucaj zero at the ongin, and tins "' L70..02
vioiates our initial necessity condition for invertbility. --- " C?
This problem can. of course. oe alleviated. If we shift oar
window to the left by 2TA/W. ic two points. the window no
longer hass a zero on the interval containing the first M Fit. 6 - Bioamogoniz to the wmuiaa wuuow afer
points, and the bioriiogonal is well benaved as is shown adding a cOeRnu Vow. of 0.2 to everv winnow
in Fig. 5. The values over the first: M points are not -mi Te amnam, ' uaw othe biormorgenis

significandy smaller than the rest of the values, and the

set of values over the whole interval am bounded by, m One hat resort to some further knowiedge of the
this case. 13.0. One of the other ways to obtam a nce stu of ft window functiona n ar to aoan resuits
biornogonal is to inase dw ampiinde of the original thiat i a sentve t smail pe 'turbatons. It is me
winnow by a constant factor. it. add a value of 0.2 to befief of the autbors that by appropriately taioring the
every point of the window. The biorthogonal window, the insmblities associnatd with one or both of
corresponding to this window has values tat ae bounded the met•ods can be nimized, and at least one of the
by 23.0. and it is displayed in Fig. 6. mhhods will give satisfactory remsts.
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tI( r-i3. Balamt. F.. "Matrix Reformulation of the Gabor
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4. Balart. R.. "Mamx Reformulation of the Gabor
Transfom". Opt. Eng .31 (6), pp 1235-1242. 1992.

Fig. 5 - Biorrholonat to the anaivru winmelwhom has b ,in sdk one smp~tw de S. tttubechies. a. " The Wavelet Transform. Time-

left. The ,mmu v. of die birdohgon Frequency Localizaton and Signal Analysis-.
wwma oh aupper handcomer ofth anw,. Trans. IT 36 (5). pp 961-1005. 1990.

4. SUMMARY
The initial motvauon that led to the develoument of the
matrix representauon of the Gabor transform was to
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Finite Discrete Gabor Transform
by Periodization and Sampling

Richard S. Orr
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Greeubelt, Maryland 20770
(301) 982.521S
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Revised 21 April 1992

2nd Revision 15 December 1992

Abstract. 1 Recent interest in the Gabor u-ansform for time-frequency signal analysis can

be attributed in part to increased knowledge about the accuracy, stability, and complexity of

algorithms for computing the transforms. Behavior of the computations depends on. among

other things, the manner in which the contmuous-parameter equations ame made discrete and

finite. The most s igorward means, truncating the time functions to compact support and

sampling, relinquihtes some control and bls the relationship of the discrete equations to the

orignal transforms. A more saifying discaeuzanon and finitization process that preserves

relations to the continuous parametr case is found by periodization and sampling, the same

method used to obtain the finite, discrete Fourier transform from the Fourier integral. By this

method we derive the finite, discrete Gabor utansform equations from the continuous

parameter counterparts, in the process explicitly exhibiting the aliasings that permit one

periodic sequence to be the finite. discrete Gabor transform of the other. By examining the

various forms in which the Gabor equations can be expressed, we discover how the input.

window. biorthogonal funcuon. Gabor coefficients and Zak transforms map under

penioization and sampling.

1This remarcn was su•noed by te Advanced Reseura Propc=e Agency of the Deoacrment of
Deense am was monitored by me Air Force Offce of Scuintftc Rsearcn under contact No. ;:49620-
90-C-0016. The United States Government is aumonzed to reoroduce ana ditrsbute reornts tor
goverflen ouroosm notwinhulanding any copyngni nomauon hereon.
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The Gabor transform has recently attracted a certain interest in ume-frequency signal

processing because of its ability to portray time history of the frequency content of a signal or

image by representing the dam as a superposition of uniform time and frequency translates of

a window function. Through choice of the window, a Gabor representation can exploit a priori

information about the signal that is useful in problems of signal detection. feature extraction.

and identification.

To some extent., current intrest in Gabor technique is fueled by successful developments

related to computing the transforms. Since Basutans first considered the question of solving

for the Gabor coefficients, given the input function and the window (9], it has been recognized

that this computation can be ill-posed, leading to questions of accuracy and stability of the

results. Although Basuaans illustrated that certain choices of window lead to particularly

quirky representations and provided some insight into the mechanisms, much was left to be

categorized. In the ten years following his valuable work, certain of the practical problems in

performing the computations necessary to evaluate the transforms have come under careful

scrutiny. Introduction of the Zak transform in the role of operational calculus for the Gabor

theory has led to an improved understanding of the underlying mappings, and this in turn has

shed light upon the supporting computational processes. Although this task is far from

complete. much more is now known about the accuracy and stability of algorithms for

computation of the Gabor transform (5. 6]. In addition, the computational complexity of these

algorithms is also better understood [23, 24]. We can now safely pay a little more attention

to what it is we ougbt :o compute.

In deriving digital computation algorithms for the Gabor transforms, one must first make

the equations discrete and finite. The most straightforward means is to truncate the time

functions to some compact support anct sample them at a rate that captures their significant

behavior. This process relinquishes some control over the end product and blurs the
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Nonetheless. some consistent theores can be developed In dti manner. Wexior and Raz

(271 have suggested a discrete formulation in which the to extent of the window function Is

truncated, but that of the biorthogonal function is not: furthermore, the frequency index

remains unbounded. Those authors have commented that the unbounded supports make this

form ill-suited to digitalcompuaon.

More recently, Balmrt (71 has developed a finite-dimension mamix formulation of the fully

Eruncazed case. in which it can be argued that the "'true" discrete Gabor coefficients are

produced when the window has bounded support. The approach of Auslander e. al. [2, 61,

which uses the Zak transform, is fully discrete and finite, and produces an mvertible transform

when no sample of the Zak transform of the window function is zero. The coefficients

produced by this algorithm, however, can differ considerably from those produced by Balart's

method, as numerical experiments performed by Balart and the author have shown. Both

methods are highly useful transforms that nevertheless differ slightly from the continuous

parameter Gabor transform. Results of the two converge for windows having sharp

discontinuities, deviating more and more from one another as the window appears to become

continuous. This is not unexpected based on the Zero Theorem of Auslander and Tolimien

(4, Theorem 11.21, which states that if the Za transform of a sufficiently rapidly decaying

function is continuous, it must have a zero. It is empirically um that the two methods are

nearly the same if the Zak transform of the window has a narrow dynamic range, but they can

diverge if the samples of that Zak transform make a close approach to a zero.

A discreUzauion and finitizanon process in which some of th relations to the continuous

parameter case, are preserved would be more satisfying and would lend insight into how

successful the more brute-force approach might prove. Wexler and Raz (27) have presented

the sampled approach for periodic functions-one of the methods discussed in this paper-

through a matrix formulation, and Auslander et al. (2, 61 have given the Zak transform

relationships under periodization of the signal. The contribution of the present paper is a

unified rematment of discretizanon of the Gabor transform and its ancillary functions by
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penodinog And samplig .

The Gabor discreaon issue parallels what is done in transrnoning from the Fourier

integral to the finite DFT, where periodiing and sampling in the time domain likewise

periodizes and samples the frequecy domain pc=. Moreover. the two periodic sequences

so created are related by the finite discrete Fourier transform (DFT). The result for a

function f and its Fourier ansform F

RV) d=ftt) exp(-j2xw), (I)

is that the following two sums are a DFT pair (25]:

(ZA~P+Ic MPI)TIJ Z PTq+^ p, qe Z. 2

For this rather remarkable formula--in which the essence of the Fourier ansform property is

maintained under sampling and aiiasing--to hold, the sampling rates in the conjugate

domains must be properly related. One samples f at spacing r, = TIP, for positive T and

positive integer P. and the resulting sequence is aiiased at every P-th sample. The

spectrum is then sampled at interval fz =11T and also aliased at the P-th sample, resulting

in two sequences of period P. The relation

1%:S =(3)

characterizes the parameter constramnL

It is important to keep in mind that equation (2) tells us nothing about the resemblance of

these finite discrete sequnces to their parent. continuous parameter functions; however,

conditions under which one is essentially a sampled version of the other are well known. In a

clever work. Auslander and Grttnbaum (31 have explored signal-independent error bounds for

this comparison, in the process numerically verifying the necessity of condition (3).
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derive all the discrete finite Gabor transform equations from tbe continuous parameter

versions through the method of periodizanon and sampling in the process explicitly exhibiting

the aliasings that permit one periodic sequence to be tbe finite, discrete Gabor transform of

the other. By examining the various forms in which tcb Gabor equations can be expressed.

we discover how the input, window, biorthogonal function. Gabor coefficients and Zak

transforms map under periodizanon and sampling.

Section 2 briefly summarizes the continuous parameter Gabor equations. giving the

fundamentl definitions for and raionships among the: (i) signal. or function to be expanded.

(ii) window function. (iii) biorthogonal function. (iv) Gabor coefficients. (v) Zak transforms.

(vi) inner products in the time and Zak domains, and (vii) sampled auto- and cross-ambiguity

functions of the signal and window. In Section 3, we transform the synthesis equation that

recovers a function from its Gabor coefficients into discrete, periodic form. The inverse

r-ansformation is visited in Section 4 in terms of the biorthogonal function. In Section 5, the

Gabor relations expressed in terms of Zak manorms are discreized. Behavior of the inner

product of Zak transforms under the discretizanon process is shown in Section 6.

Relationships that permit solution for the Gabor coefficients to be expressed as a

deconvolution of the sampled crossambigtity function of the signal and window are analyzed

under perodization and sampling in Section 7. In Section 8 we obtain the Gabor coefficients

of the DFT of the given signal Our concluding observations appear in Section 9.
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2. The cmiduumv parametar Gaboir equatk

In this section we summarize without proof results that serve as a basis for deve kopaat

of the discret equatios.

2J. Defin~iti (.rywuuits formula)

A Gabor rpresmnuion of a time function flt) is a seies expamion of the following frm:

.fir) = (4)

in which fan.,), m, n e Z, are the Gabor coefficients, and w(t), the window.

Translates of w(t) over the von Neumann Ian= having a unit area cell of dimension 7 x

(I/') in the tume-fmquency plane form the Gabor baw f w.,(t) 1, as follows:

W,.(t) = w(t - nfl acpOQ2A ) ; m, n e Z. (5)

In this regard. the Gabor expansion may be compared to its generalization, the Weyl-

Heisenberg expansions, which can use any density of basis functions a 1 (13, 14, 181.

In generaL. the (w.,(t) are nonorthogonal. and (4) is a nonorthogonal expansion.

which is the mason one must take some pains to assure accuracy and stability of algorithms

that compute the transformation. Gabor expansions can be orthogonaL. but this is neither

required nor always Iesirable, as discussed in [131. Conditions for orthogonality. of the

Gabor basis are found in Boon and Zak (101. These can be expressed in terms of the auto-

ambiguity function of the window--see Tolizizen and Orr (261-and a general constuction of

orthogonal Gabor expansions has recently been developed by Coifnan eL a, (11].
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which we demo by (t). and defme in nomaton diff n om Cabo•r•s:

lllr-__r ZJ_121
S~t) =9 MR Fr1.(6)

where o is the RMS pulse width. The normais-a-ion in (6) is that the window has unit

energy, or L 2 norm. which is a convezuent condition we shall assume throughout for all

windows:

1Ii8F fdt I(t)i2 = F . (7)

Helstrom (191, in 1966, demonstrated the continuous parameter version of Gaborms

Gaussian expansion and noted the relationship to Glauber's coherent states of quantum

mechanics (161. In 1967 both Mont and Reed (221 and Crum (121 published on the

expansion of functions in other than Gaussian elementary signals, generating what was then

viewed as a continuous parameter Gabor-like tranform that would later be called the short-

time Fourier transform.

It was in Bastiaans (8] that the biorthogonal function for the Gaussian window was

introduced. In later considermg other functions for the window role, Bastisns (91 provided

the basis of modern Gabor theory by his concern for the inversion of Gabor's eprseMaton.

2. The borrhogonW fwnc (wu•.•s fomuua)

In the biorthogonol method, one uses both the bans functions wm,.(t)) and a related set

of biordhogonal ftwwcinsf bn(t)),

b.,,(t) = bet - n7) expQ2•zMt') m., n e Z, (8)
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. J dt w(t- nI)b (t - qZ) exp(f2(m -p•IT] , 8 ,.. (9)

When such b(t) exisms (9) permits analysis of f into its coefficients by inner products of

At) and thef b,.(t)) accotding to the formia

a.x= (=I(b".. = l t) b,,(, (10)

2.3. The Zak ranwfrm

A second method of wriung the Gabor coefficime is based upon using the Zak trawrtrm, a

turn-fr~equency mapping given by

7.f(v,)= X•fkT ÷ p(-j2xkvr. (11)
k -•

Taking Zak transforms on both sides of (4) yields the following relaion among the Zak

transform off, the Zak ransform of w, and the Gabor coefficients (2. 6. 21):

7 =A ) Zw(v.T) q. expo27(MYT- n-T)]. (12)
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The I a,..) an found foamaly by mvmng the ,wo-diuwmzonai Fourkir seis on the nrght

".* = dT dv 7W v Cp(•2(-MSTr nm')]. (13)

If. however. Zw bas a zero whler Zf does not, ZJ•Zw is not an L2(TxF) function, where

C=0. 7) and IF = (0. 1/7). 7.•Zw can be LI'(.xF). in which cue Gabor coefficients

can be computed from (13), but may not be square summable, and any tu'ncated

repres entaton that uses but a finite number of them can have large errors. Also. a Riemann

sum approximarion to the double integral may not provide numerically accurate formulas.

Issues related to stabilizabon of this process are not discussed in this paper.

The relationship between the window and biorthogonal functions is reciprocal in the Zak

domain: Zb(v, T) = 11'Z*w(v, T)].

Synthesis off from (11) follows by inverting the DFT after recovering Zf( v, ") from the

{aL } via (12):

flkT + r') = T fdv Zfv, r)expQ2,kr), k e Zr "e T. (14)

2.4. The deconvoidon merhods

Deconvolution permits recovery of f from its sampled short-time Fourier transform (STFT)

((f I w,)}), using the fact that the Zak transform is an isomorphism. preserving inner

products to within a scale factor (21]:

C7/17• = le),(15)
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where

f7.fWT. T =j ,/v dT 74(v.r)Zg(vv. r (16)

In (18] and (21], the authors define the Zak mmaorm with a nonmlizanoa that makes the

scale facto in (15) unity for all T. Multiplying both sides of (12) by Zw*v, .),

Zftv.?) Zw(v,?) = IZw(v.T)F a. expUjz(mdT- nVT)J, (17)

and compuing the Founer coefficients of both ers s reduces (17), after simplificaon.

to the convolution (2]

SlwM.A): a... aq(wi w,.,..4 (18)

pm.-- qm.in

This equation can of course be obtained more directly from (4) by raking the inn product

indicated on the left and employing the shift theorem (201. For present purposes it is the

Fourier transform of (17) hat is of greae

Equation (18) is often used in comparing the Gabor and short-time Fourier transforms

(1]. It shows the 'smearing' of the Gabor coefficients by the window-dependent kernel to

produce the STFT. If a function w is used as a window in both transforms it cannot hare

both the smoothness dsred for spectral analysis and the fme1 structure that stabilizes the

Gabor expansion. as explained by the BaHan-Low theoren (17].

Extraction of the Gabor coefficients from (18) requires deconvolution of the sampled

S'TFT. Fourier analysis of both sides of (18) converts (17) into:
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• i it I -,.j) M:P D"2X/'1• - SVY")]

;FTj zW( V 2)F • (19)

Deconvolunon is also the generalized inverse for Mcomplete Gabor expansons, providing

the coefficients of the orthogonal projection of f onto tbe subspace spanned by the bas

vectors.

In the following sections we convert the formulas of each method to a self-consusent set

of equations that describe the finite, discrete Gabor transform. obtaining tools that are

amenable to digital computation of the uansforms.

3. The synthesis formula

In this and the following sections we develop the finite discrete Gabor relationships.

Denvation of the first formula is presented in fll Following that derivations are relgazed to

the Appendix.

The starting point is (4), from which we eventuaLly want to prove (33), which expresses

the samples of the periodized signal (29) as a function of suitably penodized window samples

(30) and Gabor coefficients (32). We periodize flt)ro a period that we restrict to a

multiple of T, 1fF:

flac(t) = ftr ÷ NO), ('20)

and formally write the Gabor expansion of fmr(t) as

= . ; .w (t-nT . k) exp(2 in(t-ki7YTJ• (21)

ku-rn m- 13in
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If we me t foowing wearong t of (21),

hfs(t) w f,, • t - (n - WrVT p D270111/71 (22)

we see that the periodizanon of f results in a coresponding penodizarion of window,

w Nr(t),

W N(t= w(t+ kANT), (23)
k

yielding

f,0 (t)= a4, wpy(t - nT) exp(,27rmnT]7. (24)

By (24), the Gabor coefficients are invanant to this joint periodization of the signal and

window.

An interpretation of more immediate use results from a rearrangement of (24). Replace n

by its modulo N representanon, n = q + sN, where 0 <5 q N - 1. s e . and replace the

corresponding sum by a double sum on q and r.

- f-I
f10(t) =Xq, a r wNy(t - q7) expo2w•tdn (25)

The periodicity of w has been exploited in reaching (25). Reorder the summatons so that

the innermost is over s. the time index of the coefficients:
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am.*, a W -Z .P07uuTJ (26)
a.-q-° L.,--.

The bracked term in (26) is a ane-aliased Gabor coefficient

By (26) and (27). penodizmngAt) sinilarty penodizes the window and the (a.L) in tme.

Now sample fiNr(t) at the M-th harmonic of IT, so that the k-th sample occurs at

time kT/M. The resultng sampled sequence then has period P = MN, and (26) becomes:

•0z .-.. pQ" z a, m M), (28)
ms.- qmO0

where we have introduced simpler notation for the penodized dam and. window-

fk( = fm(kTIM) (29)

Wk•• N =,s(kTIM"/ (30)

Now apply modular represenion to the frequency index m, since the complex

exponential in (28) has period M ram. Let m p+ rM. O 5 p S M - L. r - Z. and

reorder the sums:

M-1- M-1 E- W (jP D k*p + rMYM]. (31)
POO qinO r
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This operation penodizes the Gabor coeffcinas in frequency, mouvatghe deaindo.

a* 4p*r4. N (32)
r•,u ~ r.j ,,g u,

Combining all the above we have

M-I N.-I

lkp a, ýff wkIP ezpfj22kpM). (33)
Pao- quo

In summary, the finite discrete Gabor representstion of the penodized and sampled f

uses the periodized and sampled window function and the doubly penodized Gabor

coefficients of the parent continuous parameter signal.

4. The biort Ios l formsla

This method begins with (10), which expresses the Gabor coefficients as inner products of f

and the set of biorthogonal functions, and executes the periodization (32). Following steps

simil to the above we find

P- I

M I L J b,..Nv mp(2xwr/M, (34)
M

Thus the process of sampling and penodizing replaces the integral expression for a... by a

finite, discrete inner product of the sampled, penodized dam and a similarly sampled and

penodized set of biorthogonal functions. The factor TIM in (34) is the sampiing interval and

cakes on the role played by the diffemtial dt in (10).
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In (12). which sms the rmlaizahic • of the Zak transfoms of the signal and window, we can

replace the index variables as follows:

m mp+rM.;OSpSM-1.rFZ (35)
n - q+sN; OSq<N-1 LseZ

and sample in tune and frequency, Le.

v=.-1 n : r (36)
NT M

to get

M-I N-I

(7M& M = (ZwkLm X ar pfzm/Miq (37)
pmO quO

Above we have introduced a shorthand noataon for the Zak transforms,

Z.iu/NT, mT/, ) (Z . (38)

The intmediate steps are found in the Appendix. Inversion of the 2-D Fourier series

immediately yields

(,.M -= (Mfk, cxp&-J2zXmp/M - nqIN)). (39)•u q."= z•

Next we show how to recover the finite discrete version of a function from its Zak

urnsform. starting from (14) and penodizing. The periodization effects sampling in the

frequency variable at spacing 1INT. Then sampling at r = p TAM. 0 S p 5 M - 1, yields
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Nqm.0, PO2-t/t0  O<p <M - 1.k eZ (40)

Formulas (37) and (39) show that the discret Gabor coeffIcients will exist either for all

f in L2(ZIP) when Zw has no zero on the sampling grd. or iw general, m the subspace of

functions f whose Zak ansforms vanish at the zMs of Zw. Via (40), the P samples of f

can be recovered from the P samples of its Zak rasform by a set of DFr's. Because of its

quasi-periodicity, the Zak transform acquires no additional penodicities w t process.

6. The inner product formulas

To sue~amline the denvation of the finIte discret deconvoluton equaions in Secuon 7, we

wil need to imow how inner products map under peiodiz•aon and sampling Let f(I and g6'P

be two penodized. sampled functions. A natural definition of their imer product is

P-i 1P-I

p.0 p.O

We find that the result may be writen in either of the forms

M-I N-I

M-I1 N-

X7W (Zf %.. (Zg Nm*(42)

Thus the inner product of two penodized, sampled funcuons is propo Ional to the 2-D inner

product of their Zak transforms.

C-18



7. The ? V-.• - ON TIF GA R REPWIýTATIM TO MLTARPROULEMS

The equation for the deconvolution of the penodized. sampled Gabor coe5czen• s from the

sampled short-urn Fourier tranform is readily found from (33). Take the indicated innr

uand apply theshift tmeammn to the indices, yielding

wT)= 1 47. a )U (W (P)I W(P',.,, 5 . (43)
pOO qMO

In the appendix we show bow this result may be found via the Zak ansform.

The correspondence of (43) to (18) is clear. The doubly infinite, two-dimensional

convolution has been replaced by a finite, end-around convolution. Again. the doubly aliased

Gabor coefficients rake the role formerly played by the Gabor coefficients of f(t).

8. Gabor transform of the DFT

The Gabor eprsenu on of a signal and its Fourier transform are tightly interrelated by

way of the Fourier utansform of the window. If we begin with the discre psemon (33)

and take the DFT, we have

N-I N-I M-I N-I
"3 1 X4ep(-j2~rr~JbY w, 4 ~O ~ ep2c~N-rcP. (4

k-O knO p-O q=O

Performing the summation on k first isolates the expression

(= P w mp(-I2xE.P), (45)
kknkuO

which is the DFT of the window. In terms of this quantity, the tranform becomes
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. ) ) M - I M -N - IN ( P

=AI I a,.W w, .,N ct~j2X(r - amNV*I1. (46)

pOO quO

In (46), the r-th DFT coefficient is expressed via a Gabor expansion whose coefficients am-

those off and using window W. The roles of ime and frequency have been in echanged and

there is a sip change in the exponentiaL This formula can be put in an alternaive form that

recovers some of the lost symmetry by replacing q with N - n and denoting the Gabor

---e-f--ens off as

2(N Al) A((47)a,,. a,3 . (47)

Exchange of time and frequency roles is now complete the coeicients of6 with respect to w

are now the coefficients of f rotated 90o in the time-fequency plane:

N-i M-.

=, w,.,, aJxNp(/22(r - nNWiIN (48)

9. Observations

The equatons defining the continuous parameter Gabor transform have been converted to

finite, discrete'form. using perodizazion and sampling. The penodic sequences Vkpý} and
{•%.iff}, where- 0 ý k -SP - 1, 0 <5 p :5 M - 1. 0 :5 q <5 N. - 1. become a Gabor transform

pair. In the linear transformation relating these, the window function is replaced by the

periodic sequence {w Pw 1, 0 S k e P - 1. When the biorthogonal function is well behavecl,

the { ag)) can be obtained from an inne product of the data, Vfp 1, and a sampled,

penodized version of b. Relationships involving the Zak transforms map sinilaiy; the

continuous arguments are replaced by discrete ones, Zf - { (Zf)q.p, , without

penodizauzon. Likewise, the convolution equation for the Gabor coefficients converts to a
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form exhibiting cs-amui. fcoons, invoving e pfto dic ) and w, •.

In aplying the Gabor ansform to signal processing problems, one woul like to have a

clear cogepde btween the finite. disc:re formulation used n comp on and the

continuous parameter equations of the theory. Specifically, one wants to see the analog

signal. window and biorthogonal functios map into a finite set of their samples, and to have a

finite set of Gabor coefficients that (i) are defined over a time-frequency region where the

coefficients of the analog signal have significant values, and (ii) am approximately equal to

the latter coefficients in that region. Creating the correspondence by periodizanion and

sampling makes this relatively straightforward. Since Gabor coefficients are aliased in tUme

and frequency in the discretizanon. one needs to assure that the replicas are sufficiently

spread to prevent significant overlap. This is done by choosing the signal period to be

suitably long with respect to the lengths of the signal and window functions, and by sampling

at a rate high enough--essentially a composite Nyquist rate--to capture the significant

frequency behavior of the signal and window. A sampling theory for Gabor expansions will be

the subject of a forthcoming paper by the author, but in its absence one can still be confident

that when these guideline precautions are observed, computations made with the finite.

discrete Gabor transform should faithfully reflect the behavior of their continuous parameter

counterpart.
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Pro for Seeion 4:

Wrming the ume index in (10) in mod N reptesemnanom gives

4s" fpV dt flt+ qtA b; (t), (A1)

and therefore

am n*q= F t t+ fl ;n) (A2)

Periodizing the Gabor coefficients with respect to fhquency yields

= = am+ pa[--qVtZflt + qNn)~ bZ; an~j (A3)

The biortdogonal summation in (AM) can be futWe developed:

Sb . , J (t ) = Z b ;,.A (t) eX p (-j2 x p dM T ) b ; A (t) • ex p (-j2. p M r7' (A 4 )
pm.i pm~m p m..

The summo of complex exponenuals can be recolnized as proportional to the formal

Fourier series of a train of impulses separated by TIM. The r-th Fourier coefficuet of such

*a tram of unit impulses is given by
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S77M t j St-k77Mj p(-JO, ')ý a MT (AS)

W49ymg

IA= '~''- c:kl7W). (A6)

When jhis is wseted into (A3), the impulse functions sample the biorthogonhl funuons.

yielding

k -

where f is the sampled. perodized f, see definiton (29). We exploit the periodicity by

writing the index k in terms of its quouctn and remainder modulo P. k = r + Ps.

raagg the sum to yield

= Lý Z I ,be I(r +"s
"M r-O M-7

F -
= 4 Z.. P L . IS4 + sP)1T) (A8)

The bracketed rm is the periodized. sampled biorthogonal function that can be written in the

nouton of (29) and (30) as
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&7 SNOP(J2+I&)UM (A9)
$S.o

lewumg us wnte the final result as in (34).

Pmofs for Secuon 5:

Beeinmn with (12). and making the change of vanables indicated in (35). we have

. .rM- 1 A N-I
Zfl V. T) = ZW(v, T) T. 7, a, dr J2 ( )V-( N ) (Al10)

Sampling (A.0) on the grid given in (36) yields

(&M = (Zw]... : : ,÷m p0j.z((,+ rMWM-(q+ "N }.(AI1)
rIm.= smWO

Upon simplifying the exponentil terms and geco~mm the inner double sum of the Gabor

coefcients overp and q as the doubly periodic corificzens (A 11) becomes

f(r+ k7) = fl( + kT+ NqT)

7- * J r dv 7,(v, T) Cp&2x(k- Nq)MT

T dv 7.(v, T) aep(2M: vT] n expff2zNq VT]. (A12)
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(ZIM.m (Z~vr.j = (Zwv. (Zwr.s). 7 Z 4aiN C~pD2X(mp/M- isqOIN. (A21)
Poo quo

Now gum both sides of (A21) over m and n. The left and rihS sides become, respecuively,

~ X 7f~m (Z,..).a.= IW(P) (A222)

and

N- A-I M-1 M-1

(Z ' Zw,.j apý ezp(12X(mpIM- nq/NV)J
mumnuon Po0 quo

1 AI a XM-N)7 (ZM4,ý, (Zwv,. s;,.m expf27C(mpIM- nq/N)]

goro quo Muonw0

M-I N-1 M-I NF-I

M- I At

= N ~aý.N) (w(Ffl w(P),..p. (A23)

Po0 quO

Combiaing the above, we have (43).
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* ~~The summaon above is recogmzed as mhe tFoimer senes of a penoic imuime muna:

Z =xpQ:2xck/N (A13)

Proofs for Section 6:

We derive the inner product formula via the Zak tasform in ths section. Equation (41) can

be rewritten replacing p with its representation mnod M. p = nM +m. when 0 :ýn ýN

- 1. and O:Sm:SM- 1.

(fPI~ý= I j~rk i (A14)
IRMO v.0

Now replace the samples fp(P and g,('F by their discet Zak transform representations (40) to

get

(f I) ti NV- Id IV (-LX (Zf). m  iF-2WN 7,(g pQ-2inrIN)J
JmOu IsuO Rao

M- I Nf-I N-I N-I

= '-X 7, (7A r.(gL,.~.X expDi2xt(s- n) rN1 (A15)
Nmt=osmOnaiO ruo

Now recognize that
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-IpUIXP2z - n) riN = N4,., (A16)
ruG

so that (A15) takes the form given in (41).

Using the easy proved remationslip [201

7 a N.T) Z'rf(-v. ) (A17)

and the penodicity of the Zak transform in its frequency variable. The Zak transform of g can

be expressed in terms of the conjugam of g:

(Zg9;.W = (Zg).... = (Zg'....9., (A18)

from which we get (42).

Prooffs for Section 7:

We multiply both sides of (37) by (ZwL., endin

M-I 1N.1
(-Z•A (Zw) . = I(Zw7,v Z PNU exMp(U-2z(mp/M, nqIN)]. (A19)

p=O qwO

If we multiply (A19) by expU2x(rp/M - sq/N)], the left-hand side becomes

(Z/., (Zw4 eziD2*2(rp/M - /•1N)] = (/u., (Zw,.,;,.. (A20)

where the second factor on the right is interpreted as the (n. m)-th sample of the Zak

ransform of w.. The right-hand side of (A19) transforms similariy, leading to
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MPNIKUM DIMENSION GABOR PAPERk
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FMnl TR'.APPLICATION OF THE GABOR REPRESENiTATION TO MLITARY PROBLEMS

EXpERME IN DIME ONALLY-OPTIMUM GABOR IREPRESENATIOmS

J. Swmeuy. k On', R. &AiAvt D. BAvmm and A. Hawm

Atanuc Aepse Electionic CArpos. 6404 Ivy Lane. Sum 300. GQINDbL MD 20770 USA

signat set-in terms of the expansion coefficients
ABSTRACT guue~nmd by the signals uni a umutcuiar remesentanon.

Series expansions of signals in which significant features in thi We sepoi e ar .nment- in
of the signal are capuired in a few larg coefficients a opMMMon technaques to use the theory in' obmnng
desirable. This work snows that given a collection of
signals. it is possible to find Gabor represcamoons for deb-Uu C1eD5IoD.
these that are maximally concentuted in ume-frequecy TEE DIMISION OF SIGNALS
sp=. The problem addressed is: given a signal sL. find T'me-bandwidth product is a familiar measure of the
the window function of the Gabor expansion dui complexity of a signal. The BT product is intrinsic. i.e..
minimizes an -average dimension" of the signal 1 of the mprusnnon applied. By conu-ast the

representations r•itive to that window. The dimension ma-sure sought here is to be used in pmierenually
measure employed is entropy based and relatd to e selecting among represeauons, and thus should be
ouanwm-mechanical technique where one interprets repise-aton dependemt. The same should be true of the
expanmon coeffcie as rtiabilitn's. m s of s of sigals. althoug suc a mesure

An itermve algonithm based on .ardal derivatives of bdmens to take on a mof ingnas.ltc naough as smtauble
the signal set dimemson with rePperm to the ex a to tkeo a mor anm nature asablemncuon was used to ewaluate •e e of seval cnacn pipaced upon the eligibles 1prosenaoam.

funtin asure t ealateafacivnes o svealSimc d .Imeso as OWd to fte -- sainnoon W ft=cenonainear optmumoon aigonthms an finding an opamum I all iprspo shoukl be expressib through the siparswindow. expanio cofciem . When me expansion is a Gabor

L DIMENSIONALLY OPTIMUM ion of sf(t).

EPRESENTATION
Series reresentons or signals in which most si•nifunt si(t) a n..n,(t). (AM
features of the signal are captured in a few large - min
coefficets me destrable in problems of deection feOPr"e
extraction. characterization and data compresmon. Many where the ( w,(i) a at m and frequency waanslations
standard examnons--.g.. classical Fourier met"bos- of a window function wQt) (21, dimension is expressed in
have but lite flexibility to adat to characmerscs of the
data. Time-frequency or ume-scale representations
encompmssing a family of trasforms specified by a We have imposed six 'reasonableness' requirement
window function (or analyzing wavelet). howeve, have on a definition of dimension, each expressible in tms of
ret potential to accomnmode the ota under analysis Dy te signal. the expansion functons and the coefficients• -

selection of a well-mamctc aransiorm. To oae there see (I I for deemils. Unoer these reamremens the unique
seems to have been little effort exoended in achieving solitmo for the dimemaon ie h orm
some of this potential for economy of representuon.

A theory for selection of good basis functions is M- -IN-J
described in a prior publication (I]. This taory ceners A us=eX4- I" ," n p0.11 (2)on deofining a dimensw,.-r=ns for amgn•ai and thent for a Mao XWO0*•'

This was suppored by the Advamncd ReSearcP. reP 2 rZ 1. (3)

Agency of the De imem of Deiense and was mner by the Jr a
U.S. Army Missile Command unoer contm t No. DAAHOJ-91- .O
C-R271. The United States Government is authorized to
reoro1uce and distribute reprints for governinental Puroses
nawthstanding any copyn. um naman hnmen.
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The result is an entropv-deived measure for which seven iteraions to the almost exactly correct state.
probabiliues ari developed from the coefficients I a, j,. achieving a dimmes of 1.00001. Experiments usmig
by analogy to quanutm mechical medhds. When a set multiple signal sets and other algorithms at reported in
of signals j s;(t)l isconsidered. a setr dimhutn can be th full poe.
defined as a weighted average of individual dimsiots: Figures 2 and 3 illustrate the results of a simple

-expiment in which dhe signal set contains two ignal. a

D - •jrD 1  (4) kucunger pulse and a decaying exponeiual. Since Uwe
two have distnct envelopes. no one winoow functon can

where the weights (, 1i J could represeut probabilitis, or represet both signals with unity dimension. Figure 2

acould be assigned to reflect relative importance of the shows the representation when the i nonopumum)

various signals. This same dimension measure has been rectangular signal is employed as the window.
proposed inaependently by Coy fum es al. (31. Coefficients for the exoonenuai signal am in the upper

frume and those for the puis signal in the lower tame in
both figures. As tie figure snows, the Gabor

3. SOLUTION TECENIQUE representation requires 3 large and several small
Analytic minimizzauon of (4) is in gneral a bleak coefficients, yielding a dimension of 2.969. The
prospect. Even writing the gradient of D with respetx o oefficients for the pulse signal. as expected consist of
the window function is difficult, and the solution of only a single term at the origin with a dimenson of 1.0.
7D - 0 is not apparent. We address the mnimumaon as The average dimensron for this representaution is then
follows: (1) since expansion coefficients ar linearly 1.98.
relted to the biorthogona function, we solve not for the The window found by opwlmlation (shown in Fig. 3)
window function w thai numius D. but its bio•rdtogonaL resembles a piecewise linear approximaton to the
b--permitng the analytic gradient to be obtaned-(rom expometial signal. and the biorthogonar correspondingly
which w is found: (2) solution for the optimum b is rsmbles that or an exponenuial. Gabor coefficents for
accomplished by iterative methods of nonlinear the exponential signal consist of one large term at the
optimizaion theory, including both those that directly iocaion corresponding to the starting point of the signal.
seek the minimum of D and those that solve for a root of and several small coefficients scammed about the
the gradient of D. Derivative aiding can range from none frequency-timne plane. resulting in dimensi 1.007. The
to analytically provided second derivatives (Hessimn coefficiet map for the pulse signal consists of two large
mnamix) (4). Routines from the MATLAB Optimization emms at the first two Gaor tme points, and several small
Toolbox and NAG FORTRAN Library generated the coefficients, producing a dimension of 1.984. The
results, average dimension for this solution is 1.50. which is 25%

The equations resulting from the above am lower (bea'r) than the solution of Fig. 2.
It should be noted that we have noc shown that these

WD 0Dn1D = results repesent a global minumum for the dimension. It- "- O0qP- 1. (5) is possible ta a more sophiia funon would
produce an even lower dimension.

Other numerical experiments performed with various
To do the implied differentiation of the (pm., ) requires a signal sets also succeeded in finding optima.
relation between the expansion coefficients and the Convergence and stability of solutions were found to be
biorhogonal function: this expression differs accmding to sensitive functions of initializaton, signal characteriscs
the form of discrem Gabor expansion used. incorporation and optimization method. Convergence to both global
of slope information in seeking the zero of the gradient is and local minima were observed, as well as to highly
achieved using the mixed second order partials unstabi . asymptotcally global minima.
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set consists of a single rectangular pulse. The opumum 3. Coifman. R.. Y. Meyer and V. Wickerhauser.

.biotogonal function. shown dashed in the "initl' panei. "Wavelet Analysis and Signal Processing," prepinn. Yale
is the same pulse in this case. Starting from a Gaussian U.. 1991.
random vector as the initial biorthogonal function. the 4. Gill. P. E.. W. Murray and M. H. Wright. Practical
aigorithm (a gradient-iuded steep= descent method using OP8mzw•tn. Academic Press. New York. 1981 (Ninth
mixed polynomial interpolation) (41 converges within Printing. 1992).
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